导航:首页 > 数字科学 > 八年级下册数学二次根式如何想乘

八年级下册数学二次根式如何想乘

发布时间:2023-03-15 11:23:50

‘壹’ 初中数学二次根式知识点及运算方法归纳

“二次根式”是初中数学的一个大难点,下面我为了大家方便复习整理了二次根式知识点及运算方法,供大家参考。

什么是二次根式

一般地,我们把形如√a(a≥0)的式子叫作二次根式,其中“√”称为二次根号,“a”叫作被开方数。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a≥0是√a为二次根式的前提条件,如√5,√(x2+1),√(x-1)(x≥1)等是二次根式,而√(-2),√(-x2-7)等都不是二次根式。

初中数学二次根式运算方法整理

二次根式的乘除法运算

1.乘法规定:(a≥0,b≥0)二次根式相乘,把被开方数相乘,根指数不变。

推广:(1)(a≥0,b≥0,c≥0)(2)(b≥0,d≥0)

2.乘法逆用:(a≥0,b≥0)积的算术平方根等于积中各因式的算术平方根的积。

注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;

3.除法规定:(a≥0,b>0)二次根式相处,把被开方数相除,根指数不变。

推广:其中a≥0,b>0,。

方法归纳:两个二次根式相除,可采用根号前的系数与系数对应相除,根号内的被开方数与被开方数对应相除,再把除得得结果相乘。

4.除法逆用:(a≥0,b>0)商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

二次限式的加减法运算

1.同类二次根式:几个二次根式化成最简根式后,如果它们的被开方数相同,就把这几个二次根式叫作同类二次根式。

关键提醒:定义中强调在化成最简二次根式后,要满足“两相同,即根指数是2,被开方数相同”这一条件,这一定义的应用很广。

2.二次根式相加减

二次根式相加减,先把各个二次根式化成最简二次根式,找出同类次根式,然后把同类二次根式分别合并。

关键提醒:二次根式的加减和整式的加减很相似,前者是合并同类二次根式,后者为合并同类项。

同类二次根式与同类项的异同

相同点

1.两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。

2.两者都能合并,而且合并法则相同。我们如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。

不同点

1.判断准则不同。判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。

2. 合并形式不同。

‘贰’ 二次根式的乘法:(1)-√12×√6= (2)√(3×7 ) × √(6×11)=

二次根式的乘法:(1)-√12×√6= (2)√(3×7 ) × √(6×11)=

(1)-√12×√6
=-√(12×6)
=-√(6²×2)
=-6√2

(2)√(3×7 ) × √(6×11)
=√(3×7×6×11)
=√(3²×154)
=3√154

6√27乘(-2√3) 二次根式

6√27=6*3√3=18√3
18√3*(-2√3)=-108

二次根式的运算:(√3+√2)*√6

(1)原式=√3*√6+√2*√6
=√18+√12
=2√3+2√2
(2)原式=√2*√49/√2-√2*√24
=√49-√48
(3)原式=3√6/√2+√24/√2
=3√2*√3/√2+√12*√2/√2
=3√3+2√2
为你解答,如有帮助请采纳,
如对本题有疑问可追问,Good luck!

数学.二次根式乘法

18根号2的平方是18*18*2=648,24*27也是648,所以根号24乘根号27是18根号2

二次根式的乘法怎么得出的

a=根号x b=根号y
a^2=x b^2=y
(a*b)^2=a^2*b^2=x*y
同求算数平方根
根号x 乘 根号y 等于 根号(x乘y)

10道二次根式的乘法和除法题目

①5√8-2√32+√50
=5*3√2-2*4√2+5√2
=√2(15-8+5)
=12√2
②√6-√3/2-√2/3
=√6-√6/2-√6/3
=√6/6
③(√45+√27)-(√4/3+√125)
=(3√5+3√3)-(2√3/3+5√5)
=-2√5+7√5/3
④(√4a-√50b)-2(√b/2+√9a)
=(2√a-5√2b)-2(√2b/2+3√a)
=-4√a-6√2b
⑤√4x*(√3x/2-√x/6)
=2√x(√6x/2-√6x/6)
=2√x*(√6x/3)
=2/3*|x|*√6
⑥(x√y-y√x)÷√xy
=x√y÷√xy-y√x÷√xy
=√x-√y
⑦(3√7+2√3)(2√3-3√7)
=(2√3)^2-(3√7)^2
=12-63
=-51
⑧(√32-3√3)(4√2+√27)
=(4√2-3√3)(4√2+3√3)
=(4√2)^2-(3√3)^2
=32-27
=5
⑨(3√6-√4)²
=(3√6)^2-2*3√6*√4+(√4)^2
=54-12√6+4
=58-12√6
⑩(1+√2-√3)(1-√2+√3)
=[1+(√2-√3)][1-(√2-√3)]
=1-(√2-√3)^2
=1-(2+3+2√6)
=-4-2√6

1题。二次根式的乘除法

你可以先算出根式的整数部分 是2 就是x是2 y就是根式减2 然后再把xy都带到要求的式子里就行了

87的二次根式除69的二次根式,+69的二次根式×78的二次根数昌散式

二次根式的乘除结果可以是二次根式吗

可以,在要求不严格迅枯的情况下。不过一般能开则开,不能开用最简根式表示,像√2,√3,√5等等

二次根薯氏式的乘除

根号a×根号b=根号(ab)
根号a÷根号b=根号(a/b)

‘叁’ 初二数学下册知识点归纳

初二数学下册知识点归纳

在平平淡淡的学习中,大家都没少背知识点吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。掌握知识点有助于大家更好的学习。以下是我整理的初二数学下册知识点归纳,欢迎阅读与收藏。

初二数学下册知识点归纳 篇1

第一章分式

1、分式及其基本性质

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2、分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3、整数指数幂的加减乘除法

4、分式方程及其解法

第二章反比例函数

1、反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2、反比例函数在实际问题中的应用

第三章勾股定理

1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形

第四章四边形

1、平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差

初二数学下册知识点归纳 篇2

1、分式的定义:

如果A、B表示两个整式,并且B中含有字母,那么式子B叫做分式。

2、对于分式概念的理解,应把握以下几点:

(1)分式是两个整式相除的商。其中分子是被除式,分母是除式,分数线起除号和括号的作用;

(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;

(3)分母不能为零。

3、分式有意义、无意义的条件

(1)分式有意义的条件:分式的分母不等于0;

(2)分式无意义的条件:分式的分母等于0。

4、分式的值为0的条件:

当分式的分子等于0,而分母不等于0时,分式的值为0。即,使B=0的条件是:A=0,B≠0。

5、有理式整式和分式统称为有理式。整式分为单项式和多项式。分类:有理式

单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。

只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。由数学网为您提供的初二下册数学知识点归纳:分式的概念,祝您学习愉快!

初二数学下册知识点归纳 篇3

含义:分母中含有未知数的方程叫做分式方程。

分式方程的解法:

①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号};

②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项,系数化为1)求出未知数的值;

③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。

一般地验根,只需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根,否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。如果分式本身约分了,也要代进去检验。

初二数学下册知识点归纳 篇4

1、正方形的概念

有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质

(1)具有平行四边形、矩形、菱形的一切性质;

(2)正方形的四个角都是直角,四条边都相等;

(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;

(4)正方形是轴对称图形,有4条对称轴;

(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3、正方形的判定

(1)判定一个四边形是正方形的主要依据是定义,途径有两种:

先证它是矩形,再证有一组邻边相等。

先证它是菱形,再证有一个角是直角。

(2)判定一个四边形为正方形的一般顺序如下:

先证明它是平行四边形;

再证明它是菱形(或矩形);

最后证明它是矩形(或菱形)。

初二数学下册知识点归纳 篇5

一、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式。

能使不等式成立的未知数的值,叫做不等式的解.不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.

由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。

等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.

二、不等式的基本性质

1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。)

性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.

性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b,则a+c>b+c;<2>、若a>b,c>0则ac>bc若c<0,则ac<bc

不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c

三、解不等式的步骤:

1、去分母;

2、去括号;

3、移项合并同类项;

4、系数化为1。

四、解不等式组的步骤:

1、解出不等式的解集

2、在同一数轴表示不等式的解集。

五、列一元一次不等式组解实际问题的一般步骤:

(1)审题;

(2)设未知数,找(不等量)关系式;

(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。

六、常考题型:

1、求4x-67x-12的非负数解.

2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.

3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。

初二数学下册知识点归纳 篇6

一、 基本情况分析

1、学生情况分析:

上学期期末考试的成绩总体来看,成绩较好,优等生较多。在学生所学知识的掌握程度上,一部分学生能够理解知识,知识间的内在联系也较为清楚,但个别学生连简单的基础知识还不能有效的掌握,成绩较差。

2、教材分析:

本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:

第十六章 二次根式

本节课的主要内容是二次根式的乘除运算和二次根式的化简。通过本节课应使学生掌握二次根式的乘除运算法则和化简二次根式的常用方法。

第十七章 勾股定理

直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余, 30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

本章重点是勾股定理和逆定理,难点是灵活运用勾股定理和逆定理解题。

第十八章 平行四边形

四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化。

本章重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系与区别。

第十九章 一次函数

函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决

简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。

第二十章 数据的分析

本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

本章重点是平均数、中位数、众数以及极差、方差等知识,难点是运用统计相关的知识解决实际问题。

二、 教学目标和要求

1、知识与技能目标

学生通过学习二次根式、勾股定理、平行四边形、一次函数、数据分析,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能。加强双基训练。

2、过程与方法目标

掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究勾股定理、平行四边形的有关判定、性质进一步培养学生的识图能力;初步建立数形结合的数学模式;通过对二次根式和一次函数的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

3、情感与态度目标

通过对数学知识的探究,进一步认识数学与生活的'密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流。

三、 提高教学质量的主要措施?

1、认真做好教学工作,也是提高成绩的主要方法:认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习,快乐生活。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,以题类题,触类旁通。培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

初二数学下册知识点归纳 篇7

分式方程:

含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 :

(1)能化简的先化简

(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;

(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法

将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么?

(1)审;

(2)设;

(3)列;

(4)解;

(5)答.

应用题有几种类型;基本公式是什么?基本上有五种:

(1)行程问题:

基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.

(2)数字问题

在数字问题中要掌握十进制数的表示法.

(3)工程问题

基本公式:工作量=工时×工效.

(4)顺水逆水问题

v顺水=v静水+v水. v逆水=v静水-v水.

初二数学下册知识点归纳 篇8

五大知识点:

1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用

2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)

3、根的判别式

4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)

5、一元二次方程根与系数的关系(韦达定理)

【课本相关知识点】

1、一元二次方程:只含有 未知数,并且未和数的 是2,这样的整式方程叫做一元二次方程。

2、能使一元二次方程 的未知数的值叫做一元二次方程的解(或根)

3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为 的形式,这个形式叫做一元二次方程的一般形式。其中ax2是 ,a是 ,bx是 ,b是 ,c是常数项

初二数学下册知识点归纳 篇9

1.乘法规定:(a≥0,b≥0)

二次根式相乘,把被开方数相乘,根指数不变。

推广:

(1)(a≥0,b≥0,c≥0)

(2)(b≥0,d≥0)

2.乘法逆用:(a≥0,b≥0)

积的算术平方根等于积中各因式的算术平方根的积。

注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;

3.除法规定:(a≥0,b>0)

二次根式相处,把被开方数相除,根指数不变。

推广:其中a≥0,b>0,。

方法归纳:两个二次根式相除,可采用根号前的系数与系数对应相除,根号内的被开方数与被开方数对应相除,再把除得得结果相乘。

4.除法逆用:(a≥0,b>0)

商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

初二数学下册知识点归纳 篇10

无理数:无限不循环小数叫无理数

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

;

‘肆’ 八年级下册数学知识点总结归纳

八年级数学下册主要有分式、二次根式、轴对称、函数等重要章节,我整理了一些重要知识点。

分式

一、分式的概念

1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2、对于分式概念的理解,应把握以下几点:

(1)分式是两个整式相除的商。其中分子是被除式,分母是除式,分数线起除号和括号的作用;

(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;

(3)分母不能为零。

3、分式有意义、无意义的条件

(1)分式有意义的条件:分式的分母不等于0;

(2)分式无意义的条件:分式的分母等于0。

二、分式的基本性质

1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是:确定几个分式的最简公分母。确定最简公分母的一般方法是:

(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

在约分时要注意:

(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幂;

(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;

(3)约分一定要把公因式约完。

二次根式

一般地,式子√a,(a≥0)叫做二次根式。

注意:(1)若a<0这个条件不成立,则 a不是二次根式;(2)a是一个重要的非负数,即a ≥0。

1、二次根式的乘法法则:√a X√b=√ab

2、二次根式比较大小的方法

(1)利用近似值比大小;

(2)把二次根式的系数移入二次根号内,然后比大小;

(3)分别平方,然后比大小。

3、二次根式的除法法则:

(1)商的算术平方根等于被除式的算术平方根除以除式的算术。

(2)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

4、最简二次根式

(1)满足下列两个条件的二次根式,叫做最简二次根式。

① 被开方数的因数是整数,因式是整式;② 被开方数中不含能开的尽的因数或因式。

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。

(4)二次根式计算的最后结果必须化为最简二次根式。

轴对称

1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们也说这个图形关于这条直线成轴对称。

2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。

3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

函数及其图象

一、一次函数

如果函数的关系式都是用自变量的一次整式表示的,我们称它们为一次函数,一次函数通常可以表示为y=kx+b的形式,其中k,b为常数且k≠0。形如y=kx(常数k≠0)的函数叫做正比例函数,它是特殊的一次函数。

1、一次函数的图象

(1)一次函数y=kx+b(k≠0)的图象是一条直线。特别地,当b=0时,该函数图象经过原点。

(2)当k>0,b>0时,直线y=kx+b经过第一、二、三象限;

当k>0,b<0时,直线y=kx+b经过第一、三、四象限;

当k<0,b<0时,直线y=kx+b经过第一、二、四象限;

当k<0,b<0时,直线y=kx+b经过第二、三、四象限;

2、一次函数的性质

一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随着x的增大而减小。

3、求一次函数的表达式

(1)先设待求函数表达式,再根据条件列出方程或方程组,求出待定系数,从而得到所求结果的方法,叫做待定系数法。

(2)用待定系数法求一次函数的解析式:可以先设出一次函数解析式为y=kx+b(k≠0),然后利用题中给出的两个条件,代入所设的解析式。列出关于k、b的二元一次方程组,求出k,b的值即可。

二、反比例函数

一般地,形如(k是常数,k≠0)的函数叫做反比例函数,自变量x的取值范围是x≠0,函数值y的取值范围是y≠0。

1、反比例函数的图象:双曲线

2、反比例函数的性质:对于反比例函数,当k>0时,图象在一、三象限,在每隔象限内,y随着x的增大而减小;当k<0时,图象在第二、四象限,在每个象限内,y随着x的增大而增大。

以上是我整理的八年级下册数学知识点,希望能帮到你。

‘伍’ 数学的二次根式乘法步骤是怎样的

二次根式乘法,根指数不变,被开方数相乘。(结果化成最简二次根式)

‘陆’ 数学的二次根式乘法步骤是怎样的能说明一下!

能不能举个例子,问题不详细

‘柒’ 八年级下数学二次根式的运算是怎么算的。。怎么搞懂求大神教一教

二次根式的运算很简单的,加减法就化作同链粗类二次根式进行合并同类项,乘除直接相乘除,最后化作最棚谨镇简二次根式。一般为化简最为晌枣麻烦,多练计算

阅读全文

与八年级下册数学二次根式如何想乘相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:704
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1317
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1022
大学物理实验干什么用的到 浏览:1448
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:829
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1606
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017