导航:首页 > 数字科学 > 最优化问题数学模型是什么意思

最优化问题数学模型是什么意思

发布时间:2023-03-16 03:26:22

Ⅰ 解决经济分析的最优化问题的基本步骤是什么

从数学角度看,最优化问题可以分为无约束最优化和约束最优化。所谓无约束最优化问题是比较简单的微分问题,可用微分求解。
管理决策问题往往也就是最优化问题,而比较常用和方便的方法就是边际分析法。
所谓“无约束”,即产品产量、资源投入量、价格和广告费的支出等都不受限制。在这种情况下,最优化的原则是:边际收入等于边际成本,也就是边际利润为零时,利润最大,此时的业务量为最优业务量。管升拦橡理决策中的诸多最优化问题,比如投入要素之间如何组合才能使成本最低;企业的产量多大,才能实现利润最大,当因变量为自变量的连续函数时,经济学与数学意义是统一的,可用边际分析法解决;而在处理离散数列的最优化问题时则可以用统计的方法先将离散数列拟合成连续函数,求得最优点,然后在原离散数列中找到离拟合曲线最优点最近的前后两点,比较其值及其投入量,既而求得最优点。
有约束条件的最优化包括一个或几个货币、时间、生产能力或其他方面的限制,当存在不等式约束条件时,可以采用线性规划。大多数情况下,管理者知道某些约束是连在一起的,即它们是同样的约束条件,可以采用拉格朗日乘数法解决这些问题。
从数学上比较一般的观点来看吵旁,所谓最优化问题可以概括为一种数学模型:结合一个函数F(x)以及自变量应满足一定的条件,求X 为怎样的值时,F(x)取得其最大值或最小值。通常,称F(x)为目标函数,X 应满足衡颂的条件为约束条件。求目标函数F(x)
在约束条件X 下的最大值或最小值问题,就是一般最优问题的数学模型,可以用数学符号简洁地表示为MinF(x)或MaxF(x)。解决最优化问题地关键步骤是如何把实际问题,抽象成数学模型,也就是构造出目标函数与约束条件,一旦这一步完成,对于简单问题,可借助图形或微积分来解决,遇到比较复杂地课题,可利用现有地数学软件或最优化软件,比如Matlab,Mathematica,Lindo,Lingo 等来计算。下面举例说明如何计算有约束条件地最优化问题。
例设某种产品的产量是劳动力x和原料y(t)的函数,f(x),y=60X 3y 2,假定每单位劳动力费用100元,每单位原料费用200元,现有2万元资金用于生产,为了得到最多的产品,应如何安排劳动力和原料。
解:依题意,可归结为求函数f(x,y)=60x 3y 2在约束条件100x+200y=20000下的最大值,故可用拉格朗日乘数法求解。

Ⅱ 数学建模中的优化模型的意义是什么呢求高手教教!!

在数学建模中,一个优化模型意味着你是在原有问题的基础上来寻找一个改进的方向,可能这个模型最终找到的答案并不是最优的,但它一般而言,比现有的要好。通常而橘世言,我们一般在数学建模中,第一次建立都不是会是做郑优化模型,而是一个一般化的模型,在这个圆胡肢模型的基础上,我们寻找改进方向的时候,才会用到优化模型。这样讲明白否?

Ⅲ 数学建模中的最优模型什么含义包括哪些模型在里面用微积分求的最大值或最小值是不是最优模型

luckyxyz ,你好:
其实根本就没什么最优模型,因为现实的问题是复杂的,要考虑很多方面,建立模型永远只能是个近似或模拟,最优模型是能最大限嫌樱派度的反映问题的本质。比如说线性规划问题,有时候会很好的反映问题的本质。这个算一个。还有很多,但是没有完全最优模型,即使用微积分求的最大,最小值也不一定是最优解,很多时候,我们只能够找到一个满意解,颂数满意解这个说法在运筹学中用的是很多的。有的问题无法用解析的方法找到解析解,只能用数值方法找个近似芹贺解。

Ⅳ 最优化问题的数学模型是什么什么叫线性规划,什么叫非线性规划

最优化问题的数学模型,可能你想问的是数学规划模型,或是最优化模型?
一般形式
目标函数: min(max)z=f(x)
约束条件: s.t. g(x) <= 0;
x >= 0
如果f(x)和g(x)都是x的线性函数,模型就称为线性规划,否则非线性规划。
高中常用知识 画图寻找最优解 作图是最烦但也是方便的

Ⅳ 数学模型是什么意思

简码数学建模:就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
数学模型(Mathematical Model)是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展卜咐前规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(MathematicalModeling)。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与型清其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机);数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。

Ⅵ 什么是最优化

最优化是应用数学的一个分支,主要指在一定条件限制下,选取某种研究方案使目标达到最优的一种方法。最优化问题在当今的军事、工程、管理等领域有着极其广泛的应用。


常见方法:

1. 梯度下降法(Gradient Descent)

梯度下降法是最早最简单,也是最为常用的最优化方法。

梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。

梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向渣茄早,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。


2. 牛顿法(Newton's Method)和拟牛顿法(Quasi-Newton Methods)

(1)牛顿法:

牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。

(2)拟牛顿法:

拟牛顿法是求解非线性优化问题最有效的方法之一,其本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian矩阵的逆,从而简化了运算的复杂度。拟牛顿法和最速下降法一样只要求每一步迭代时知道目标函数的梯度。

通过测量梯度的变化,如雀构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法更为有效。如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。


3. 共轭梯度法(Conjugate Gradient)

共轭梯度法是介于最速下降法与牛顿法之间的一个方法纳哪,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。

在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。


4. 启发式优化方法

启发式方法指人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案。

启发式优化方法种类繁多,包括经典的模拟退火方法、遗传算法、蚁群算法以及粒子群算法等等。


5. 拉格朗日乘数法

作为一种优化算法,拉格朗日乘子法主要用于解决约束优化问题,它的基本思想就是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的无约束优化问题。拉格朗日乘子背后的数学意义是其为约束方程梯度线性组合中每个向量的系数。

将一个含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的无约束优化问题,拉格朗日乘数法从数学意义入手,通过引入拉格朗日乘子建立极值条件,对n个变量分别求偏导对应了n个方程,然后加上k个约束条件(对应k个拉格朗日乘子)一起构成包含了(n+k)变量的(n+k)个方程的方程组问题,这样就能根据求方程组的方法对其进行求解。

Ⅶ 数学优化问题(最优化问题)

  数学优化(Mathematical Optimization)问题,也叫最优化问题,是指在一定约束条件下,求解一个目标函数的最大值(或最小值)问题。
  数学优化问题的定义为:给定一个目标函数(也叫代价函数) f : A → R ,寻找一个变量(也叫参数) x ∈ D ,使得对于所有 D 中的 x f(x ) ≤ f(x) (最小化);或者 f(x ) ≥ f(x) (最大化),其中 D 为变量 x 的约束集,也叫可行域; D 中的变量被称为是可行解。

  根据输入变量 x 的值域是否为实数域,数学优化问题可以分为离散优化问题和连续优化问题。

  离散优化(Discrete Optimization)问题是目标函数的输入变量为离散变量,比如为整数或有限集合中的元素。连续优化(Continuous Optimization)问题是目标函数的输入变量为连续变量 x ∈ R d ,即目标函数为实函数。离散优化问题主要有两个分支:

  离散优化问题的求解一般都比较困难,优化算法的复杂度都比较高。后面的内容主要以连续优化为主。

  在连续优化问题中,根据是否有变量的约束条件,可以将优化问题分为无约束优化问题和约束优化问题。
   无约束优化问题(Unconstrained Optimization) 的可行域为整个实数域 D = R d ,可以写为
其中 x ∈ R d 为输入变量, f : R d → R 为目标函数。
   约束优化问题(Constrained Optimization) 中变量 x 需要满足一些等式或不等式的约束。约束优化问题通常使用拉格朗日乘数法来进行求解。

  如果目标函数和所有的约束函数都为线性函数,则该问题为 线性规划问题(Linear Programming) 。相反,如果目标函数或任何一个约束函数为非线性函数,则该问题为 非线性规划问题(Nonlinear Programming)
  在非线性优化问题中,有一类比较特殊的问题是 凸优化问题(Convex Programming) 。在凸优化问题中,变量 x 的可行域为凸集,即对于集合中任意两点,它们的连线全部位于在集合内部。目标函数 f 也必须为凸函数,即满足
  凸优化问题是一种特殊的约束优化问题,需满足目标函数为凸函数,并且等式约束函数为线性函数,不等式约束函数为凹函数。

   优化问题 一般都是通过 迭代 的方式来求解:通过猜测一个初始的估计 x 0 ,然后不断迭代产生新的估计 x 1 , x 2 , · · · x t ,希望 x t 最终收敛到期望的最优解 x 。一个好的优化算法应该是在 一定的时间或空间复杂度下能够快速准确地找到最优解。同时,好的优化算法受初始猜测点的影响较小,通过迭代能稳定地找到最优解 x 的邻域,然后迅速收敛于 x
  优化算法中常用的迭代方法有 线性搜索和置信域方法 等。线性搜索的策略是寻找方向和步长,具体算法有梯度下降法、牛顿法、共轭梯度法等。

  对于很多非线性优化问题,会存在若干个局部的极小值。局部最小值,或局部最优解 x 定义为:存在一个δ > 0,对于所有的满足|| x − x∗|| ≤ δ 的 x ,公式 f(x ) ≤ f(x) 成立。也就是说,在 x 的附近区域内,所有的函数值都大于或者等于 f(x ) 。对于所有的 x A ,都有 f(x∗) ≤ f(x) 成立,则 x 为全局最小值,或全局最优解。一般的,求局部最优解是容易的,但很难保证其为全局最优解。 对于线性规划或凸优化问题,局部最优解就是全局最优解

阅读全文

与最优化问题数学模型是什么意思相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:704
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1317
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1022
大学物理实验干什么用的到 浏览:1448
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:829
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1606
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017