Ⅰ 七年级数学题带答案
2008 — 2009学年度第一学期期末考试七学年上数学试卷
(时间: 分钟 满分:120分) 评分——
一、选择题:(下列各小题都给出四个选项,其中只有一项是符合题目要求的,每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10
答案
1.-2的绝对值是
A.-2 B.2 C. D.-
2.如图1,已知线段AB,以下作图不可能的是
在AB上取一点C,使AC=BC
在AB的延长线上取一点C,使BC=AB
在BA的延长线上取一点C,使BC=AB
在BA的延长线上取一点C,使BC=2AB
3. 下列计算正确的是
A. - ()3= B.-()2 = C. - ()3= D. - ()3= -
4.下列方程中,属于一元一次方程的是
A. B. 3x2+4y=2 C. x2+3x=x2-1 D.x2+3x-1=8+5x
5.下列事件中,必然发生的事件是
(A)明天会下雨 (B)小明数学考试得99分
(C)今天是星期一,明天就是星期二 (D)明年有370天
6.如图,∠AOB=180°,OD、OE分别是∠AOC和∠BOC的平分线,则与线段OD垂直的射线是
A.OA B.OC C.OE D.OB
7. 用一个平面去截一个正方体,截面的形状不可能是
A、梯形 B、五边形
C、六边形 D、七边形
8.如果2(x+3)的值与3(1-x)的值互为相反数,那么x等于
A.9 B.8 C.-9 D.-8
9..某工厂现有工人人,若现有人数比两年前原有人数减少35%,则该工厂原有人数为
A B C (1+35%) D (1+35%)
10.如果代数式4y2-2y+5的值是7,那么代数式2y2-y+1的值等于
A. 2 B. 3 C.﹣2 D.4
二、耐心填一填:(本大题8小题,每小题3分,计24分)
11、若点C是线段AB的中点,且AB=10cm,则AC = cm.
12、姚明一定不会输给其他任何一个NBA球员:是 事件(填必然,不可能或不确定)。
13.据测算,我国每年因沙漠化造成的直接经济损失超过5400000万元,用科学记数法表示这个数是 万元。
甲、乙、丙三地的海拔高度分别是20 m、-15m、-5m,那么最高的地方比最低的地方高__________m
15、如果某月共有4个星期五,这4个星期五的日期之和为62,则这4天分别是
16、小刚每晚19:00都要看央视的“新闻联播”节目,这时钟面上时针与分针夹角的度数为____________
17、如图,∠AOC和∠BOD都是直角,如果∠DOC=,
则∠AOB是__ ______度;
18、如图,下面是用火柴棍摆的正方形,请你仔细观察第n个图形中共有 根(用n的代数式表示)火柴棍。
三、细心做一做(本大题4小题,每小题8分,共32分)
19、 计算:-42×+│-2│3×(-)3
20、 解方程:
21、先化简,后求值:已知:,其中
22、 如图,AB∥CD,直线EF分别交AB、CD于点E、F,
EG平分∠AEF,∠1=40°.求∠2的度数.
四、沉着冷静,周密考虑(本大题共2小题,每小题11分,共22分)
23、已知1-=, -=, -=,-=…根据这些等式求值.
24、出租车的收费标准为起步价5元,3千米后每千米收费1.70元,某人乘坐出租车x千米,付费多少元?若他坐出租车7千米,要付费多少元?
五、充满信心,成功在望(共12分)
25、请根据图中提供的信息,回答下列问题 :
(1)一个暖瓶与一个水杯分别是多少元?
(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定: 这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.
84元
38元
2008 — 2009学年度第一学期期末考试七学年上数学试卷
参考答案
题号 1 2 3 4 5 6 7 8 9 10
答案 B C D C C C D A B A
一、
二、11、5 12、不确定 13、5.4×106, 14、35 15、5 号、12 号、19 号、 26 号
16、150 ° 17、144 18、3n+1 19、=-1-1=-2
20、去分母,得 15x-3(x-2)=5(2x-5)-3×15 去括号,得 15x-3x+6=10x-25-45
移项,得15x-3x-10x =-25-45-6 合并同类项,得 2x=-76 系数化为1,得x=-38
21、解:=
=
将代入得
原式=-4×1×(-2)=8
22、80° 23、 24、1.7x-0.1,11.8元;
25、(1)解:设一个暖瓶x元,则一个水杯为(38-x)元, 根据题意得:
2x+3(38-x)=84
解得 x=30 38-30=8
答:一个暖瓶30元,一个水杯8元
(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216(元)
若到乙商场购买,则所需的钱数为:4×30+(15-4)×8=208(元)
因为 208<216
所以,到乙家商场购买更合算
Ⅱ 七年级上学期期末数学考试试卷及答案解析
考试是检测你的学习情况,数学是重要的学科。下面由我给你带来关于七年级上学期期末数学考试试卷及答案,希望对你有帮助!
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 下列四个数中最小的数是()
A. ﹣2 B. 0 C. ﹣ D. 5
考点: 有理数大小比较.
分析: 根据有理数的大小比较方法,找出最小的数即可.
解答: 解:∵﹣2<﹣<0<5,
∴四个数中最小的数是﹣2;
故选A.
点评: 此题考查了有理数的大小比较,用到的知识点是负数<0<正数,两个负数,绝对值大的反而小,是一道基础题.
2. 如图是某几何体的三视图,则该几何体的侧面展开图是()
A. B. C. D.
考点: 由三视图判断几何体;几何体的展开图.
分析: 由三视图可以看出,此几何体是一个圆柱,指出圆柱的侧面展开图即可.
解答: 解:根据几何体的三视图可以得到该几何体是圆柱,圆柱的侧面展开图是矩形,且高度=主视图的高,宽度=俯视图的周长.
故选A.
点评: 本题考查了由三视图判断几何体及几何体的侧面展开图的知识,重点考查由三视图还原实物图的能力,及几何体的空间感知能力,是立体几何题中的基础题.
3. 用一副三角板(两块)画角,不可能画出的角的度数是()
A. 15° B. 55° C. 75° D. 135°
考点: 角的计算.
专题: 计算题.
分析: 解答此题的关键是分清两块三角板的锐角度数的度数分别是多少,然后对应着4个选项再进行组合,看看可迟戚能画出的角的度数是多少即可.
解答: 解:两块三角板的锐角度数分别为:30°,60°;45°,45°
用一块三角板的45°角和另一块三角板的30°角组合可画出15°、75°角,
用一块三角板的直角和和另一块三角板的45°角组合可画出135°角,
无论两块三角板怎么组合也不能画出55°角.
故选B.
点评: 此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角度数搜册的度数分别是多少,比较简单,属于基础题.
4. 实数a在数轴上的位置如图所示,则|a﹣2.5|=()
A. a﹣2.5 B. 2.5﹣a C. a+2.5 D. ﹣a﹣2.5
考点: 实数与数轴.
分析: 首先观察数轴,可得a<2.5,然后由绝对值的性质,可得|a﹣2.5|=﹣(a﹣2.5),则可求得答案.
解答: 解:如图可得:a<2.5,码漏陵
即a﹣2.5<0,
则|a﹣2.5|=﹣(a﹣2.5)=2.5﹣a.
故选B.
点评: 此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大.
5. 用平面截一个正方体,可能截出的边数最多的多边形是()
A. 七边形 B. 六边形 C. 五边形 D. 四边形
考点: 截一个几何体.
分析: 用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形.
解答: 解:正方体有六个面,截面与其六个面相交最多得六边形,故选B.
点评: 本题考查正方体的截面.正方体的截面的四种情况应熟记.
6. 下列计算正确的是()
A. (2a2)3=6a6 B. a2•(﹣a3)=﹣a6
C. ﹣5a5﹣5a5=﹣10a5 D. 15a6÷3a2=5a3
考点: 整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
分析: 根据整式的乘除,分别对各选项进行计算,即可得出答案.
解答: 解:A、(2a2)3=8a6,故A错误;
B、a2•(﹣a3)=﹣a5,故B错误;
C、﹣5a5﹣5a5=﹣10a5,故C正确;
D、15a6÷3a2=5a4,故D错误.
故答案选C.
点评: 此题考查了整式的乘除,解题时要细心,注意结果的符号.
7. 若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则正确的为()
A. a
考点: 负整数指数幂;有理数的乘方;零指数幂.
分析: 根据负整数指数幂、有理数的乘方、零指数幂的定义将a、b、c、d的值计算出来即可比较出其值的大小.
解答: 解:因为a=﹣0.32=﹣0.09,
b=﹣3﹣2=﹣=﹣,
c=(﹣)﹣2==9,
d=(﹣)0=1,
所以c>d>a>b.
故选D.
点评: 本题主要考查了
(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.
(2)有理数比较大小:正数大于0;0大于负数;两个负数,绝对值大数的反而小.
8. 如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()
A. 30° B. 45° C. 50° D. 60°
考点: 角的计算.
专题: 计算题.
分析: 从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.
解答: 解:∵∠AOB=∠COD=90°,∠AOD=150°
∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.
故选A.
点评: 此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.
9. 已知x=y,则下列各式:,其中正确的有()
A. 2个 B. 3个 C. 4个 D. 5个
考点: 等式的性质.
分析: 根据等式的性质进行解答即可.
解答: 解:∵x=y,
∴x﹣1=y﹣1,故本式正确;
∵x=y,
∴2x=2y,故2x=5y错误;
∵x=y,
∴﹣x=﹣y,故本式正确;
∵x=y,
∴x﹣3=y﹣3,
∴=,故本式正确;
当x=y=0时,无意义,故=1错误.
故选B.
点评: 本题考查的是等式的性质,熟知等式的基本性质1,2是解答此题的关键.
10. 一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x折,由题意列方程,得()
A. 3000x=2000(1﹣5%) B.
C. D.
考点: 由实际问题抽象出一元一次方程.
分析: 当利润率是5%时,售价最低,根据利润率的概念即可求出售价,进而就可以求出打几折.
解答: 解:设销售员出售此商品最低可打x折,
根据题意得:3000×=2000(1+5%),
故选D.
点评: 本题考查了由实际问题抽象出一元一次方程的知识,理解什么情况下售价最低,并且理解打折的含义,是解决本题的关键.
二、填空题(本大题共6小题,每小题3分,共18分)
11. 地球上的海洋面积约为36100万km2,可表示为科学记数法3.61×108km2.
考点: 科学记数法—表示较大的数.
分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于36100万有9位,所以可以确定n=9﹣1=8.
解答: 解:36100万=361 000 000=3.61×108.
故答案为:3.61×108.
点评: 此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
12. 如a<0,ab<0,则|b﹣a+3|﹣|a﹣b﹣9|的值为﹣6.
考点: 整式的加减;绝对值.
专题: 计算题.
分析: 由已知不等式判断得出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.
解答: 解:∵a<0,ab<0,
∴b>0,
∴b﹣a+3>0,a﹣b﹣9<0,
则原式=b﹣a+3+a﹣b﹣9=﹣6.
故答案为:﹣6.
点评: 此题考查了整式的加减,以及绝对值,熟练掌握运算法则是解本题的关键.
13. 如果y=﹣2x,z=2(y﹣1),那么2x﹣y﹣z=8x+2.
考点: 整式的加减.
专题: 计算题.
分析: 将第一个等式代入第二个等式中表示出z,将表示出的z与y代入原式计算即可得到结果.
解答: 解:将y=﹣2x代入得:z=2(y﹣1)=2(﹣2x﹣1)=﹣4x﹣2,
则2x﹣y﹣z=2x﹣(﹣2x)﹣(﹣4x﹣2)=2x+2x+4x+2=8x+2.
故答案为:8x+2.
点评: 此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
14. 爷爷快八十大寿,小明想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑着说,“在日历上,那一天的上下左右4个日期的和正好等于爷爷的年龄”.小明爷爷的生日是20号.
考点: 一元一次方程的应用.
分析: 要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.
解答: 解:设那一天是x,则左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,
依题意得x﹣1+x+1+x﹣7+x+7=80
解得:x=20
故答案是:20.
点评: 本题考查了一元一次方程的应用.此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.
15. 若k为整数,则使得方程kx﹣5=9x+3的解是负整数的k值有1或5或7或8.
考点: 一元一次方程的解.
专题: 计算题.
分析: 方程移项合并,将x系数化为1,表示出方程的解,根据k为整数即可确定出k的值.
解答: 解:方程移项合并得:(k﹣9)x=8,
解得:x=,
由x为负整数,k为整数,得到k=8时,x=﹣8;k=5时,x=﹣2;当k=7时,x=﹣4,k=1,x=﹣1,
则k的值,1或5或7或8.
故答案为:1或5或7或8
点评: 此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
16. 某家庭6月1日时电表显示的读数是121度,6月7日24时电表显示的读数是163度,从电表显示的读数中,估计这个家庭六月份(共30)的总用电量是180度.
考点: 用样本估计总体.
分析: 先计算出6月1日至7日每天的平均用电量,再乘以30即可解答.
解答: 解:6月1日到6月7日七天共用电163﹣121=42度,
则平均每天用电为42÷7=6度,
六月份30天总用电量为6×30=180度.
故答案为180.
点评: 此题考查了用样本估计总体,计算出前7天的用电量,即可估计30天的用电量.
三、解答题(本大题共8小题,共52分)
17. 计算:
(1)
(2).
考点: 有理数的混合运算;单项式乘单项式.
专题: 计算题.
分析: (1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;
(2)原式先计算乘方运算,再利用单项式乘以单项式法则计算即可得到结果.
解答: 解:(1)原式=﹣1×(﹣)×5+9×(﹣)
=3+2﹣
=3;
(2)原式=3a4b3c•a2c4
=3a6b3c5.
点评: 此题考查了有理数的混合运算,以及单项式乘单项式,熟练掌握运算法则是解本题的关键.
18. 解方程:.
考点: 解一元一次方程.
专题: 计算题.
分析: 方程去分母后,去括号,移项合并,将x系数化为1,即可求出解.
解答: 解:去分母得:4(2x﹣1)﹣3(2x﹣3)=12,
去括号得:8x﹣4﹣6x+9=12,
移项得:8x﹣6x=12+4﹣9,
合并得:2x=7,
解得:x=3.5.
点评: 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解.
19. 先化简2(x2y+3xy2)﹣3(x2y﹣1)﹣2x2y﹣2,再求值,其中x=﹣2,y=2.
考点: 整式的加减—化简求值.
分析: 原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.
解答: 解:原式=2x2y+6xy2﹣3x2y+3﹣2x2y﹣2
=﹣3x2y+6xy2﹣2,
当x=﹣2,y=2时,原式=﹣24﹣24﹣2=﹣50.
点评: 此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.
20. 小明、小颖、小彬周末计划去儿童村参加劳动,他们家分别在如图所示的A、B、C三点,他们三人约定在D处集合.已知集合地点在点C的南偏西30°,且到点的距离是点B到点A,点B到点C的距离的和,请你用直尺(无刻度)、圆规和量角器在下图中确定点D的位置.(不写作法,保留作图痕迹,写出结论)
考点: 作图—应用与设计作图;方向角.
分析: 首先作出过点C南偏西30°的射线,进而截取CD=BC+AB,即可得出答案.
解答: 解:如图所示:D点位置即为所求.
点评: 此题主要考查了应用设计与作图以及方向角问题,根据题意利用圆规截取得出CD=BC+AB进而得出D点位置是解题关键.
21. 已知一条射线OA,如果从O点再引两条射线OB和OC,使∠AOB=60°,∠BOC=20°,OD是∠AOB的平分线,求∠COD的度数.
考点: 角的计算;角平分线的定义.
分析: 分类讨论:OC在∠AOB外,OC在∠AOB内两种情况.
根据角平分线的性质,可得∠BOD与∠AOB的关系,再根据角的和差,可得答案.
解答: 解:①OC在∠AOB外,如图
OD是∠AOB的平分线,∠AOB=60°,
∠B0D=∠AOB=30°,
∠COD=∠B0D+∠BOC
=30°+20°
=50°;
②OC在∠AOB内,如图
OD是∠AOB的平分线,∠AOB=60°,
∠B0D=∠AOB=30°,
∠COD=∠B0D﹣∠BOC
=30°﹣20°
=10°.
点评: 本题考查了角的计算,先根据角平分线的性质,求出∠BOD,在由角的和差,得出答案,分了讨论是解题关键.
22. 若2x+5y﹣3=0,求4x•32y的值.
考点: 同底数幂的乘法;幂的乘方与积的乘方.
分析: 由方程可得2x+5y=3,再把所求的代数式化为同为2的底数的代数式,运用同底数幂的乘法的性质计算,最后运用整体代入法求解即可.
解答: 解:4x•32y=22x•25y=22x+5y
∵2x+5y﹣3=0,即2x+5y=3,
∴原式=23=8.
点评: 本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.
23. 列一元一次方程解应用题
某自行车队进行训练,训练时所有队员都以35km/h的速度前进,突然,1号队员以45km/h的速度独自前进,行进一段路程后又调转车头,仍以45km/h的速度往回骑,直到与其他队员汇合,1号队员从离队开始到与其他队员重新汇合共行进了15分钟,问1号队员掉转车头时离队的距离是多少km?
考点: 一元一次方程的应用.
分析: 设1号队员掉转车头时独自前进的时间为x小时,则回走用的时间为(0.25﹣x)小时,根据追击问题与相遇问题的数量关系建立方程求出其解既可以求出结论.
解答: 解:设1号队员掉转车头时独自前进的时间为x小时,则回走用的时间为(0.25﹣x)小时,由题意,得
(45﹣35)x=(45+35)(0.25﹣x),
解得:x=.
∴1号队员掉转车头时离队的距离是:(45﹣35)×=km.
答:1号队员掉转车头时离队的距离是km.
点评: 本题考查了行程问题的数量关系的运用,追击问题的数量关系的运用,相遇问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.
24. 某区七年级有3000名学生参加“中华梦,我的梦”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计,请你根据下列不完整的表格,回答按下列问题:
成绩x(分) 频数
50≤x<60 10
60≤x<70 16
70≤x<80 a
80≤x<90 62
90≤x<100 72
(1)a=40;
(2)补全频数分布直方图;
(3)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区七年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级是哪一个等级的可能性大?请说明理由.
考点: 频数(率)分布直方图;频数(率)分布表;可能性的大小.
分析: (1)根据样本容量为200,再利用表格中数据可得出a的值;
(2)利用表中数据得出70≤x<80分数段的频数,补全条形图即可;
(3)找出样本中评为“D”的百分比,估计出总体中“D”的人数即可;求出等级为A、B、C、D的概率,表示大小,即可作出判断.
解答: 解:(1)根据题意得出;a=200﹣10﹣16﹣62﹣72=40,
故答案为:40;
(2)补全条形统计图,如图所示:
;
(2)由表格可知:评为“D”的频率是=,
由此估计全区八年级参加竞赛的学生约有×3000=150(人)被评为“D”;
∵P(A)=0.36;P(B)=0.51;P(C)=0.08;P(D)=0.05,
∴P(B)>P(A)>P(C)>P(D),
∴随机调查一名参数学生的成绩等级“B”的可能性较大.
点评: 此题考查了频数(率)分布直方图,频数(率)分布表,以及可能性大小,弄清题意是解本题的关键.
Ⅲ 七年级数学难题(解答题)及答案
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
小学数学应用题综合训练(06)
51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?
52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?
54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.
55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.
56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?
58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.
小学数学应用题综合训练(07)
61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?
62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.
65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?
68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.
70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
小学数学应用题综合训练(08)
71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?
74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?
75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?
80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?
小学数学应用题综合训练(09)
81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
83. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?
84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.
85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.
87. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?
88. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?
89. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
90. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?
小学数学应用题综合训练(10)
91. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.
92. 快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?
93. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.
94. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.
95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?
96. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?
97. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?
98. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?
99. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?
100. 一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?
小学数学应用题综合训练(11)
101. 小明买了1支钢笔,所用的钱比所带的总钱数的一半多0.5元;买了1支圆珠笔,所用的钱比买钢笔后余下的钱的一半少0.5元;又买了2.8元的本子,最后剩下0.8元.小明带了多少元钱?
102. 儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?
103. 在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去;8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间?
104. 一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到.这支解放军部队的行程是多少千米?
105. 一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米.因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米?
106. 甲、乙两个班的学生人数的比是5:4,如果从乙班转走9名学生,那么甲班就比乙班人数多2/3.这时乙班有多少人?
107. 甲、乙两堆煤共重78吨,从甲堆运出25%到乙堆,则乙堆与甲堆的重量比是8:5.原来各有多少吨煤?
108. 一件工作,甲单独做要20天完成,乙单独做要12天完成,如果这件工作先由甲队做若干天,再由乙队做完,两个队共用了14天,甲队做了几天?
109. 某电机厂计划生产一批电机,开始每天生产50台,生产了计划的1/5后,由于技术改造使工作效率提高60%,这样完成任务比计划提前了3天,生产这批电机的任务是多少台?
110. 两个数相除商9余4,如果被除数、除数都扩大到原来的3倍.那么被除数、除数、商、余数之和等于2583.原来的被除数和除数各是多少?
小学数学应用题综合训练(12)
111. 在一条笔直的公路上,甲、乙两地相距600米,A每小时走4千米,B每小时走5千米.上午8时,他们从甲、乙两地同时相向出发,1分钟后,他们都调头向相反的方向走,就是依次按照1,3,5,7……连续奇数分钟的时候调头走路.他们在几时几分相遇?
112. 有两个工程队完成一项工程,甲队每工作6天后休息1天,单独做需要76天完工;乙队每工作5天后休息2天,单独做需要89天完工,照这样计算,两队合作,从1998年11月29日开始动工,到1999年几月几日才能完工?
113. 一次数学竞赛,小王做对的题占题目总数的2/3,小李做错了5题,两人都做错的题数占题目总数的1/4,小王做对了几道题?
114. 有100枚硬币(1分、2分、5分),把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中1分硬币全换成等值的5分硬币,硬币总数变成63个,那么原有2分及5分硬币共值几分?
115. 甲、乙两物体沿环形跑道相对运动,从相距150米(环形跑道上小弧的长)的两点出发,如果沿小弧运动,甲和乙第10秒相遇,如果沿大弧运动,经过14秒相遇.已知当甲跑完环形跑道一圈时,乙只跑90米.求环形跑道的周长及甲、乙两物体运动的速度?
Ⅳ 100道初一数学题及答案
(1)58×99+58
=58×(99+1)
=58×100
=5800
(2)75+86+25+14
=(75+28)+(86+14)
=100+100
=200
(3)125×32
=125×8×4
=1000×4
=4000
(4)101×56
=(100+1)×56
=100×56+56
=5600+56
=5656
(5)25×4+75×4
=(25+75)×4
=100×4
=400
(6)300÷125÷8
=300÷(125×8)
=300÷1000
=0.3
(7)396-96-172-28
=(396-96)-(172+28)
= 300-200
= 100
Ⅳ 七年级下册数学试卷答案参考
知识如果不能改变思想,使之变得完善,那就把它抛弃,拥有知识,却毫无本事------不知如何使用,还不如什么都没有学,下面给大家分享一些关于七年级下册数学试卷答案参考,希望对大家有所帮助。
一、选择题(本大题共15小题,每小题3分,共45分)
1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是(C)
A.沙漠B.骆驼C.时间D.体温
2.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中,常量是(C)
A.aB.SC.pD.p,a
3.一辆汽车以平均速度60km/h的速度在公路上行驶,则它所走的路程s(km)与所用的时间t(h)之间的关系式为(D)
A.s=60tB.s=60tC.s=t60D.s=60t
4.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表,下面能表示日销售量y(件)与销售价x(元)的关系式是(C)
x(元)152025…
y(件)252015…
A.y=x+40B.y=-x+15C.y=-x+40D.y=x+15
5.根据生物学研究结果,青春期男女生身高增长速度呈现如图规律,由图可以判断,下列说法错误的是(D)
A.男生在13岁时身高增长速度最快
B.女生在10岁以后身高增长速度放慢
C.11岁时男女生身高增长速度基本相同
D.女生身高增长的速度总比男生慢
6.弹簧挂重物后会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系:
x01234…
y88.599.510…
下列说法不正确的是(D)
A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6kg,弹簧长度为11cm
C.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm
7.三角形ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,三角形ABC的面积(B)
A.从20cm2变化到64cm2B.从64cm2变化到20cm2
C.从128cm2变化到40cm2D.从40cm2变化到128cm2
8.小强将一个球竖直向上抛起,球升到点,垂直下落,直到地面.在此过程中,球的高度与时间的关系可以用下图中的哪一幅来近似地刻画(C)
9.对于关系式y=3x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示,其中正确的是(D)
A.①②③B.①②④C.①③⑤D.①②⑤
10.星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分)的函数图象,根据图象信息,下列说法正确的是(B)
A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟
C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路
11.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是(B)
A.一杯热水放在桌子上,它的水温与时间的关系
B.一辆汽车从起动到匀速行驶,速度与时间的关系
C.一架飞机从起飞到降落的速度与时间的关系
D.踢出的 足球 的速度与时间的关系
12.如图所示,三角形ABC的底边BC=x,顶点A沿BC边上高AD向D点移动,当移动到E点,且DE=13AD时,三角形ABC的面积将变为原来的(B)
A.12B.13C.14D.16
13.“龟兔赛跑”讲述了这样的 故事 :的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是(D)
14.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的变量关系式的图象是(C)
15.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,三角形APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是(B)
二、填空题(本大题共5小题,每小题5分,共25分)
16.在一定高度,一个物体自由下落的距离s(m)与下落时间t(s)之间变化关系式是s=12gt2(g为重力加速度,g=9.8m/s2),在这个变化过程中,时间t是自变量,距离s是因变量.
17.汽车开始行驶时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行驶时间t(小时)的关系式为y=-7t+55.
18.某烤鸡店在确定烤鸡的烤制时间时,主要依据的是下面表格的数据:
鸡的质量(kg)0.511.522.533.54
烤制时间(min)406080100120140160180
若鸡的质量为4.5kg,则估计烤制时间200分钟.
19.如图所示的图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中横轴表示时间,纵轴表示小明离家的距离,则小明从学校回家的平均速度为6km/h.
20.如图所示是关于变量x,y的程序计算,若开始输入的x值为6,则最后输出因变量y的值为42.
三、解答题(本大题共7小题,共80分)
21.(8分)根据下表回答问题.
时间/年201120122013201420152016
小学五年级女同学的平均身高/米1.5301.5351.5401.5411.5431.550
(1)这个表格反映哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)这个表格反映出因变量的变化趋势是怎样的?
解:(1)时间与小学五年级女同学的平均身高之间的关系.时间是自变量,小学五年级女同学的平均身高是因变量.
(2)小学五年级女同学的平均身高随时间的增加而增高.
22.(8分)温度的变化是人们经常谈论的话题,请根据图象与同伴讨论某天温度变化的情况.
(1)这一天的温度是多少?是在几时到达的?最低温度呢?
(2)这一天的温差是多少?从最低温度到温度经过多长时间?
(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?
解:(1)37℃;15时;23℃.
(2)14℃;12小时.
(3)从3时到15时温度在上升.从0时到3时温度在下降,15时以后温度在下降.
23.(10分)分析下面反映变量之间关系的图,想象一个适合它的实际情境.
解:答案不,如:(1)可以把x和y分别代表时间和蓄水量,那么这个图可以描述为:一个水池先放水,一段时间后停止,随后又接着放水直到放完.
(2)可以把x和y分别代表时间和高度,那么这个图就可以描述为:一架飞机从一定的飞行高度慢慢下降一个高度,然后在这一高度飞行了一段时间后,快到机场时,开始降落,最后降落在机场.
24.(12分)科学家研究发现,声音在空气中传播的速度y(米∕秒)与气温x(℃)有关:当气温是0℃时,音速是331米∕秒;当气温是5℃时,音速是334米∕秒;当气温是10℃时,音速是337米∕秒;当气温是15℃时,音速是340米∕秒;当气温是20℃时,音速是343米∕秒;当气温是25℃时,音速是346米∕秒;当气温是30℃时,音速是349米∕秒.
(1)请你用表格表示气温与音速之间的关系;
(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(3)当气温是35℃时,估计音速y可能是多少?
解:(1)
x(℃)051015202530…
y(米/秒)331334337340343346349…
(2)表格反映了音速和气温之间的关系.气温是自变量,音速是因变量.
(3)352米/秒.
25.(12分)文具店出售书包和文具盒,书包每个定价为30元,文具盒每个定价为5元.该店制定了两种优惠方案:①买一个书包赠送一个文具盒;②按总价的九折(总价的90%)付款.某班学生需购买8个书包、若干个文具盒(不少于8个),如果设文具盒个数为x(个),付款数为y(元).
(1)分别求出两种优惠方案中y与x之间的关系式;
(2)购买文具盒多少个时,两种方案付款相同?
解:(1)依题意,得y1=5x+200,y2=4.5x+216.
(2)令y1=y2,即5x+200=4.5x+216.解得x=32.
当购买32个文具盒时,两种方案付款相同.
26.(14分)如图表示甲骑电动自行车和乙驾驶汽车沿相同路线由A地到B地两人行驶的路程y(千米)与时间x(小时)的关系,请你根据这个图象回答下面的问题:
(1)谁出发较早?早多长时间?谁到达B地较早?早多长时间?
(2)请你求出表示电动自行车行驶的路程y(千米)与时间x(小时)的关系式.
解:(1)甲早出发2小时,乙早到B地2小时.
(2)y=18x.
27.(16分)如图棱长为a的小正方体,按照下图的 方法 继续摆放,自上而下分别叫第一层、第二层…第n层.第n层的小正方体的个数记为S.解答下列问题:
(1)按要求填写下表:
n1234…
S13610…
(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?
解:(1)如表所示.
(2)S=n(n+1)2.当n=10时,S=10×(10+1)2=55.
七年级下册数学试卷答案参考相关 文章 :
★ 七年级下册数学试卷及答案
★ 七年级数学下册练习册参考答案
★ 七年级数学下册复习题答案
★ 人教版七年级数学下册课本练习题答案
★ 七年级下数学练习册答案
★ 2020七年级数学下册练习册答案3篇
★ 七年级数学单元测试题
★ 人教版七年级下数学期末试卷
★ 七年级数学下册期末试卷题
★ 七年级数学下册课时作业本答案参考
Ⅵ 初一下学期的数学考试试题及答案
一、选择题:(本大题满分30分,每小题3分)
1、下列语句错误的是( )
A、数字0也是单项式 B、单项式— 的系数与次数都是1
C、 是二次单项式 D、 与 是同类项
2、如果线段AB=5cm,BC=4cm,那么A,C两点的距离是( )
A、1cm B、9cm C、1cm或9cm D、以上答案都不对
3、如图1所示,AE//BD,∠1=120°,∠2=40°,则∠C的度数是( )
A、10° B、20° C、30° D、40°
4、有两根姿正长度分别为4cm和9cm的木棒,若想钉一个三角形木架,现有五根长度分别为3cm、6cm、11cm、12.9cm、13cm的木棒供选择,则选择的方法有( )
A、1种 B、2种 C、3种 D、4种
5、下列说法中正确的是( )
A、有且只有一条直线垂直于已 知直线
B、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
C、互相垂直的两条线段一定相交
D、直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线l的距离是3cm.
6、在下列轴对称图形中,对称轴的条数最少的图形是( )
A、圆 B、等边三角形 C、正方形 D、正六边形
7、在平面直角坐标系中,一只电子青蛙每次只能向上或向下或向左或向右跳动一个单位,现已知这只电子青蛙位于点(2,—3)处,则经过两次跳动后,它不可能跳到的位置是( )
A、(3,—2) B、(4,—3) C、(4,—2) D、(1,—2)
8、已知方程 与 同解,则 等于( )
A、3 B、—3 C、1 D、—1
9、如果不等式组 的解集是 ,那么 的值是( )
A、3 B、1 C、—1 D、—3
10、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变 换:
① ②
按照以上变换有: ,那么 等于( )
A、(3,2) B、(3,- 2) C、(-3,2) D、(-3,-2)
第二部分非选择题(共90分)
二、填空题(本大题满分24分,每小题3分)
11、如图,BC⊥AC,CB=8cm,AC=6cm,AB=10cm,那么点B到AC的距离是 ,点A到BC的距离是 ,A、B两点间的距离是 。
12、如图,在 △ABC中,∠C=90º,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,
则BC= cm
13、如图,CD是线段AB的垂直平分线,AC=2,BD=3,则四边形ACBD的
周长是
14、如图,OA=OB,OC=OD,∠O=60°, ∠C=25°,则∠BED等于_____________
15、已知点 在第二象限,则点 在第 象限。
16、某班为了奖励在校运会上取得较 好成绩的运动员,花了400 元钱购买甲,乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各买滚或多少件?该问题中,若设购买甲种奖品 件,乙种奖品 件,则可根据题意可列方程组为
17、若一个多边形的内角和为外角和的3倍,则这个多边形为 边形。
18、若关于 的二元一次方程组 的解满足 ,则 的取值范围为
三、解答题(本大题满分66分)
19、解下列方程组及不等式组(每大册伍题5分,共10分)
(1) (2)
20、(本小题8分)某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题:
(1)共抽取了多少名
名学生的数学成绩进行分析?
(2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?
(3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?
21、(本小题8分)如图所示,一艘货轮在A处看见巡逻艇M在其北偏东62º的方向上,此时一艘客轮在B处看见这艘巡逻艇M在其北偏东13º的方向上,此时从巡逻艇上看这两艘轮船的视角∠AMB有多大?
22、(本小题10分)已知:如图,AB=DC,AE=DF,CE=FB,求证:AF=DE。
23、(本小题10分)已知,如图,∠B=∠C=90 º,M是BC的中点,DM平分∠AD C。
(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论。
(2)线段DM与AM有怎样的位置关系?请说明理由。
24、(本小题12分)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种型号的.设备,其中每台的价格,月处理污水量如下表:
A型 B型
价格(万元/台)
处理污水量(吨/月) 240 200
经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台设备少6万元。
(1)求 、 的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
(3)在(2)问到条件下,若该月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案。
25、(本小题8分)在平面直角坐标系中,已知三点 ,其中 满足关系式 ;
(1)求 的值,(2)如果在第二象限内有一点 ,请用含 的式子表示四边形ABOP的面积;若四边形ABOP的面积与 的面积相等,请求出点P的坐标;
附加题:(共10分)(3)若B,A两点分别在 轴, 轴的正半轴上运动,设 的邻补角的平分线和 的邻补角的平分线相交于第一象限内一点 ,那么,点 在运动的过程中, 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由。
(4)是否存在一点 ,使 距离最短?如果有,请求出该点坐标,如果没有,请说明理由。
一、 选择题
BCBCD BCADA
二、 填空题
11、8cm,6cm,10cm 12、8 13、10 14、80º 15、一
16、 17、八 18、
三、解答题
21、(本小题8分)
依题意得:∵点M在点A的北偏东62 º,∴∠MAB=28º
∵∠MBF=13º, ∠ABF=90º ∴∠ABM=103 º
∴∠AMB=180 º—∠MAB—∠ABM=180 º—28º—103 º=49 º
23、(本小题10分)(1)AM是平分∠BAD,
理由如下:过点M作ME⊥AD于点E。
∵DM平分∠ADC且MC⊥ CD, ME⊥AD ∴MC=ME
∵M为BC的 中点 ∴MC=MB
∴ME=MB ∵MB⊥AB, ME⊥AD
∴AM平分∠BAD
(2)DM⊥AM
理由如下:∵DM平分∠ADC ∴∠ADM= ∠ADC
∵AM平分∠BAD ∴∠DAM= ∠BAD
∵∠B=∠C=90 º ∴AB//CD
∴∠ADC+∠BAD=180 º
∴∠ADM+∠DAM= ∠ADC+ ∠BAD= (∠ADC+∠BAD)=90 º
∴∠DMA=90 º
∴DM⊥AM
25、(本小题8分)(1)a=2,b=3,c=4(2)四边形ABOP的面积 ;
的面积=6, 点P的坐标(-3,1);
附加题:(共10分)(3) 的大小不会发生变化其定值
【 内 容 结 束 】
Ⅶ 七年级数学上册应用题及答案
做 七年级数学 应用题可以明智,学习可以促进人的成熟,以下是我为大家整理的七年级数学上册应用题及参考答案,希望你们喜欢。
七年级数学上册应用绝如题及答案:1-10题
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完?
还要运x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
还要运7次才能完
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
悄宏行它的高是10米
3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
这9天中平均每天生产x个
9x+908=5408
9x=4500
x=500
这9天中平均每天生产500个
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米?
乙每小时行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小时行40千米
5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
平均成绩是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成绩是83分
6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
平均启哗每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒
7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢 足球 ,平均每组多少人?
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人
8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克
9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵?
平均每行梨树有x棵
6x-52=20
6x=72
x=12
平均每行梨树有12棵
10、一块三角形地的面积是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米
七年级数学上册应用题及答案:11-20题
11、李师傅买来72米布,正好做20件大人衣服和16件 儿童 衣服.每件大人衣服用2.4米,每件儿童衣服用布多少米?
每件儿童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米
12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁
13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
需要x时间
50x=40x+80
10x=80
x=8
需要8时间
14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
苹果x
3x+2(x-0.5)=15
5x=16
x=3.2
苹果:3.2
梨:2.7
15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点?
甲x小时到达中点
50x=40(x+1)
10x=40
x=4
甲4小时到达中点
16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时,求乙的速度.
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5
17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米.问原来两根绳子各长几米?
原来两根绳子各长x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原来两根绳子各长21米
18.某校买来7只 篮球 和10只足球共付248元.已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?
每只篮球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只篮球:24
每只足球:8
18小明家中的一盏灯坏了,现想在两种灯裏选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同.节能灯售价高,但是较省电;白灯售价低,但是用电多.如果电费是1元/(千瓦时),即1度电1元,试根据课本第三章所学的知识内容,给小明意见,可以根据什么来选择买哪一种灯比较合理?
参考资料:
(1) 1千瓦=1000瓦
(2) 总电费(元)=每度电的电费(元/千瓦时)X灯泡功率(千瓦)X使用时间(小时)
(3) 1度电=1千瓦连续使用1小时
假设目前电价为1度电要3.5元
如果每只电灯泡功率为21瓦,每小时用电则为0.021度.
每小时电费= 3.5元 X 0.021 =0.0735元
每天电费=0.0735 X 24小时 =1.764元
每月电费=1.764 X 30天 =52.92元
这是一个简单的一元一次方程的求解平衡点问题,目标是从数个决策中找出各个平衡点,从不同的平衡点选择中来找出较优的决策.
解答过程:
设使用时间为A小时,
1*0.011*A+60=1*0.06*A+3
这个方程的意义就是,当使用节能灯和白灯的时间为A小时的时候,两种灯消耗的钱是相同的.解方程.
A=1163.265小时
也就是说当灯泡可以使用1163.265小时即48.47天的时候两个灯泡所花费的钱的一样多的.
那么如果灯泡寿命的时间是48.47天以下,那么白灯比较经济,寿命是48.47天以上,节能灯比较经济.
19为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费.若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140
19某大商场家电部送货人员与销售人员人数之比为1:8.今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货.结果送货人员与销售人数之比为2:5.求这个商场家电部原来各有多少名送货人员和销售人员?
设送货人员有X人,则销售人员为8X人.
(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154
X=14
8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员
20现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%
七年级数学上册应用题及答案:21-29题
21甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/
设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙
22甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4.求原来每个车间的人数.
设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的
23甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288
24甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度.
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
25两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2.4
即停电了2.4小时.
26.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度.
27.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
注意:说明理由!
列一元一次方程解!
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
补充回答:
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2.4
即停电了2.4小时.
28已知某服装厂现在有A布料70M,B布料52M,现计划用这两种布料生产M.N的服装80套.已知做一套M服装用A料0.6M,B料0.9M,做一套N服装工用A料1.1M,B 料0.4M
1)设生产M服装X件,写出关于X的不等式组
2)有哪几种符合题意的生产方案?
3)若做一套M服装可获利45元,N服装获利50元,问:那种 射击 方案可使厂获利最大?利润是多少?
1).设生产M服装X件
0.6x+1.1(80-x)≤70 ①
0.9x+0.4(80-x)≤52 ②
解得①x≥36
②x≤40 即36≤x≤40
2).方案一:M服装36套 N服装44套
方案二:M服装37套 N服装43套
方案三:M服装38套 N服装42套
方案四:M服装39套 N服装41套
方案五:M服装40套 N服装40套
3).方案一:45×36+50×44=3820(元)
方案二:45×37+50×43=3815(元)
方案三:45×38+50×42=3810(元)
方案四:45×39+50×41=3805(元)
方案五:45×40+50×40=3800(元)
29小王家里装修,他去商店买灯,商店柜台里现有功率为100瓦的白炽灯和40瓦的节能灯,它们的单价分别为二元和三十二元,经了解,这两种灯的照明效果和使用寿命都一样.已知小王所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算? 《用电量(度)=功率(千瓦)x时间
设时间为x小时时小王选择节能灯才合算:
0.5*100/1000x+2>0.5*40/1000x+32
0.5*0.1x+2>0.5*0.04x+32
0.05x+2>0.02x+32
0.05x-0.02x>32-2
0.03x>30
x>1000
答:当这两种灯的使用寿命超过1000个小时时,小王选择节能灯才合算.