❶ 六年级数学上册学习的主要内容
圆的认识(一)
1.圆中心的一点叫圆心,用O表示.一端在圆心,另一端在圆上的线段叫半径,用r表示.两端都在圆上,并过圆心的线段叫直径,用d表示.
2.圆有无数条半径,有无数条直径.
3.圆心决定圆的位置,半径决定圆的大小.
圆的认识(二)
4.把圆对折,再对折就能找到圆心.
5.圆是轴对称图形,直径所在的直线是圆的对称轴.圆有无数条对称轴.
6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.
圆的周长和半圆的周长:
7.圆一周的长度就是圆的周长.半圆的周长等于圆周长的一半加一条直径。
8.圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时通常取3.14.
9.C=πd或C=πr.
10.1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4
圆的面积
11.用S表示圆的面积, r表示圆的半径,那么S=πr^2 S环=π(R^2-r^2)
12.11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256 17^2=289 18^2=324 19^2=361 20^2=400
13.周长相等时,圆的面积最大.面积相等时,圆的周长最小.
百分数的应用
百分数的应用(四)
14.利息=本金乘利率乘时间
比的认识
15.两个数相除,又叫做这两个数的比.比的后项不能为0.16.比的前项和后项同时乘上或除以一个相同的数(0除外).比值不变,这叫做比的基本性质.
六年级全册数学知识点(整个小学阶段和中学都通用,比较重要)
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【和差问题公式】
(和+差)÷2=较大数; (和-差)÷2=较小数。
【和倍问题公式】
和÷(倍数+1)=一倍数; 一倍数×倍数=另一数, 或 和-一倍数=另一数。
【差倍问题公式】
差÷(倍数-1)=较小数; 较小数×倍数=较大数, 或 较小数+差=较大数。
【平均数问题公式】
总数量÷总份数=平均数。
【一般行程问题公式】
平均速度×时间=路程; 路程÷时间=平均速度; 路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速; (顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
仅供参考:
【工程问题公式】
(1)一般公式:
工效×工时=工作总量; 工作总量÷工时=工效; 工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
【盈亏问题公式】
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2
=8(个)………………人数
10×8-9=80-9=71(个)………………………桃子
或8×8+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏÷(两次每人分配数的差)=人数。
(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈÷(两次每人分配数的差)=人数。
(例略)
【鸡兔问题公式】
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一 (100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二 (4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答 略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一 (4×1000-3525)÷(4+15)
=475÷19=25(个)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
***【植树问题公式】
(1)不封闭线路的植树问题:
间隔数+1=棵数;(两端植树)
路长÷间隔长+1=棵数。
或 间隔数-1=棵数;(两端不植)
路长÷间隔长-1=棵数;
路长÷间隔数=每个间隔长;
每个间隔长×间隔数=路长。
(2)封闭线路的植树问题:
路长÷间隔数=棵数;
路长÷间隔数=路长÷棵数
=每个间隔长;
每个间隔长×间隔数=每个间隔长×棵数=路长。
(3)平面植树问题:
占地总面积÷每棵占地面积=棵数
【求分率、百分率问题的公式】
比较数÷标准数=比较数的对应分(百分)率;
增长数÷标准数=增长率;
减少数÷标准数=减少率。
或者是
两数差÷较小数=多几(百)分之几(增);
两数差÷较大数=少几(百)分之几(减)。
【增减分(百分)率互求公式】
增长率÷(1+增长率)=减少率;
减少率÷(1-减少率)=增长率。
比甲丘面积少几分之几?”
解 这是根据增长率求减少率的应用题。按公式,可解答为
百分之几?”
解 这是由减少率求增长率的应用题,依据公式,可解答为
【求比较数应用题公式】
标准数×分(百分)率=与分率对应的比较数;
标准数×增长率=增长数;
标准数×减少率=减少数;
标准数×(两分率之和)=两个数之和;
标准数×(两分率之差)=两个数之差。
【求标准数应用题公式】
比较数÷与比较数对应的分(百分)率=标准数;
增长数÷增长率=标准数;
减少数÷减少率=标准数;
两数和÷两率和=标准数;
两数差÷两率差=标准数;
【方阵问题公式】
(1)实心方阵:(外层每边人数)2=总人数。
(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。
或者是
(最外层每边人数-层数)×层数×4=中空方阵的人数。
总人数÷4÷层数+层数=外层每边人数。
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一 先看作实心方阵,则总人数有
10×10=100(人)
再算空心部分的方阵人数。从外往里,每进一层,每边人数少2,则进到第四层,每边人数是
10-2×3=4(人)
所以,空心部分方阵人数有
4×4=16(人)
故这个空心方阵的人数是
100-16=84(人)
解二 直接运用公式。根据空心方阵总人数公式得
(10-3)×3×4=84
原价等于现价除以打几折
打几折等于原价除以现价
现价等于原价乘以打几折
❷ 六年级数学上册主要的内容是什么每单元的重点是什么
第一单元:只要记住先列在行。
第二单元:1.分数乘分数,分子乘分子,分母乘分母,能约分的先约分再乘。
2.整数乘法的交换律、结合律、分配律,对与分数乘法也适用。
3.谁是谁的几分之几就是谁乘以谁。
4.乘积是1的两个数互为倒数。
第三单元:1.除以一个不等于0 的数,等于乘这个数的倒数。
2.已知一个数的几分之几是多少,求这个数,就等于那个数除以几分之几。
3.已知比一个数多或少几分之几的数是多少,就等于多或少的部分除以单位1.
4.比的前项除以后项等于比值。
第四单元:1.连接圆心和圆上的任意一点的线段叫做半径。通过圆心并且两端都在圆上的线段叫做直径。
2.半径=r,直径=d,C=πd=2πr,S=πr*,圆环S=π(R*-r*)
第五单元:1.百分数表示一个数是另一个数的百分之几,百分数也叫百分比或百分率。
2.已知比一个数多或少百分之几的数是多少,就等于多或少的部分除以单位1.
3.几折就表示十分之几也就是百分之几。
4.应纳税额=营业额X税率 利息=本金X利率X时间
后面的没有重点
❸ 六年级数学上册每个单元的名称
第一单元:位置 (如何表示位置)
第二单元:分数乘法(里面还包括倒数的认识)
第三单元:分笑岩数除法 (包括比的应用)
第四单元:圆 (了解圆,求圆的周长碰斗御和面积)
第五单元:百分数 (百分数的认识,百分数和小数、分数的互化,用百分数解决问题,另外还有折扣、纳税等)
第六单元:统计(条形统计图,折线统计图,扇形统计图等更适用于那些方面之类的问题)
第七单元:数学广角(解鸡兔同笼类的问题)
第八单元:总复习
手打得好销谈累啊,帮你把各个单元都总结了一下,自认为六年级上学期数学并不难学,主要就是分数乘除一部分有些难,只要弄明白整体"1"其实就可以了.
❹ 六年级上册你学到了哪些数学知识,你有那些收获和感受呢
学会了分数乘法,分数除法的运算,能将他们灵活运用。懂得了百分数的写法读法及运算,了解了比,解决了数对以及鸡兔同笼的问题。学会了求圆的面积和圆的周长,扇形和扇环的面积,全面掌握了位置与方向,回顾了曾经的折线统计图和条形统计图,又新学了扇形统计图。在数学广角中了解了数与形,在这一学期中学到了许许多多的知识。
❺ 小学六年级的数学学习内容有什么(人教版)
上册:位置、分数乘法、分数除法、圆、百分数、统计、数学广角
下册:负数、圆柱与圆锥、比例、统计、数学广角
❻ 人教版六年级上册数学书第二单元的内容
第二单元分数乘法
一、教学内容
本单元教学内容包括三部分内容:分数乘法、解决问题和倒数。
二、教学目标
1.理解分数乘法的意义,掌握分数乘法的计算方法,会进行分数乘法计算。
2.理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。
3.理解倒数的意义,掌握求倒数的方法。
4.会运用分数乘法解决一些简单的实际问题,体会数学与日常生活的联系。
三、具体编排
1.分数乘法(安排了6个例题)
分三个层次进行教学。
第一个层次学习分数乘整数,在整数乘法和分数加法的基础上学习。
第二个层次学习分数乘分数,在理解分数乘法意义的基础上,通过操作去理解和学习。通过这两个层次的学习帮助学生理解并掌握分数乘法的计算方法。
第三个层次学习混合运算的内容,使学生理解整数乘法运算定律与运算顺序对分数运算同样适用,并会运用乘法运算定律进行分数的简便计算。
例1(教学分数乘整数)
从分数乘整数引入分数乘法教学,帮助学生理解分数乘整数的意义及算理,掌握计算方法。从人的步距与袋鼠步距的比较这样一个实际问题引入。分四个步骤安排教学内容。
(1)给出信息,提出问题。
(2)用线段图帮助学生理解题意,使学生明确:求人跑3步的距离是袋鼠跳一下的几分之几,实际上是求3个2/11,为探究计算方法做好准备。
(3)探究计算方法。
先出示加法计算,是同分母分数相加,属已学过的内容。
再出示乘法计算,根据乘法的意义,将乘式转化为加法算式计算:分母不变,分子相加。再根据乘法的意义,将同分子连加的形式转化为乘式,得出分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。
(4)讨论归纳分数乘整数的计算方法。
例2(说明分数乘整数,为了计算简便能约分的要先约分再计算)
在学生掌握分数乘整数的计算方法基础上,使学生进一步了解乘得的积一般应该化成最简分数。把积化为最简分数有两种处理方法,一是将乘得的积的分子与分母约分,另一种方法是在乘的过程中将分数的分母与整数进行约分。教材突出第二种方法,说明能约分的先约分再计算可以使计算简便。
例3(教学分数乘分数)
分数乘分数的算理较难理解,所以本例通过直观操作,帮助学生理解算理。分两个层次教学,先解决求一个数的几分之一的问题,再解决求一个数的几分之几是多少的问题。(具体说明)
解决第一个问题:1/4小时粉刷这面墙的几分之几?可分两步操作。第一步把一张长方形的纸片看作一面墙,先涂出1小时粉刷的面积,即这面墙的1/5,第二步再涂出1/4小时粉刷这面墙的面积,即1/5的1/4,直观得出1/5的1/4是1/20。在此基础上,根据操作的过程和结果推导出计算方法。
第二个问题:3/4小时粉刷多少?让学生用前面的方法涂色、推导与计算,自主解决问题。
在此基础上以学生讨论的形式得出分数乘分数的计算方法。
例4(说明分数乘分数应先约分再乘)
通过计算,使学生明确分数乘分数计算也应该先约分再乘,这样计算比较简便。
这里还提出了分数乘整数的计算方法,除了像例2那样写成3×6/8后进行约分,也可以把分数的分母与整数直接约分。把分数乘法的两种形式集中呈现,加强对比与联系。
例5:教学整数乘法运算定律推广到分数。
通过观察计算得出“整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用”。
例6(乘法运算定律的应用)
结合具体计算,说明乘法运算定律在分数乘法计算中的应用。
“做一做”安排运用运算定律进行分数乘法的简便计算。
2.解决问题
教材共安排3个例题,分2个层次教学。
例1教学解答求一个数的几分之几是多少的问题;
例2、例3教学稍复杂的求一个数的几分之几是多少的问题。
例1(教学求一个数的几分之几是多少的问题)
以中国人均耕地面积与世界人均耕地面积这两个量的比较引入。
用线段图表示出问题的数量关系和要求的问题,用“想”这种形式来提示学生根据线段图思考解决问题的思路,由于是“我国人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500㎡,求我国人均耕地面积就是求2500的2/5是多少。最后列式计算解决问题。
最后针对计算的结果进行国情教育。
“做一做”安排一道与例题相同类型的题目,以巩固这类问题的解决思路与方法。
例2(稍复杂的求一个数的几分之几是多少的问题)
这是一个数量与它的部分量的比较关系,即知道一个部分量是总量的几分之几,求另一个部分量的问题。
教材选取了绿化造林可以降低噪音这一环保题材,出示一幅情景图:公路上汽车的噪音有80分贝,在绿化隔离带后面,噪音降低了1/8。提出问题:人现在听到的声音是多少分贝?
解答一般有两种方法,一种是先求出已知是总量几分之几的部分量,再用总量减去这个部分量,求出另一个部分量。教材用线段图表示出数量关系及解题的两个步骤,并以学生叙述解决思路的方式提示出先求什么。然后列出算式,让学生求出结果。
另一种是先求出要求的部分量占总量的几分之几,再根据分数乘法的意义求出这个部分量是多少。教材仅出示线段图,提示要找出先求什么,没有给出解答算式,意图要求学生自主探索解决问题。
最后要求学生对两种思路进行比较,目的是通过比较,加深对两种思考方法的认识,同时培养学生比较、归纳的能力。
例3(稍复杂的求一个数的几分之几是多少的问题)
这是两个数量的比较关系,即已知一个数量比另一个数量多(少)几分之几,求这个数量。
教材以人心脏跳动次数为素材引入例题。
其中“婴儿每分钟心跳的次数比青少年多4/5”是解题的关键。教材由小精灵提出“婴儿每分钟心跳的次数比青少年多4/5表示什么意思?”让学生理解其含义。这句话可以转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的4/5。”理解了这句话,就应该知道把什么看作单位“1”,就容易理解数量关系了,接着教材还是利用线段图帮助理解数量关系。
这题也有两种解答方法,教材只出现一种,另一种方法教材没有出示,只是用“想一想,还有其他的方法吗”提示让学生结合例2的学习自己想出。
3.倒数的认识
这部分内容是在学习了分数乘法的基础上教学的,主要为后面学习分数除法做准备。
安排了2个例题,分别教学倒数的意义和求倒数的方法。
例1(教学倒数的含义)
编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出它们的共同特点,导出倒数的定义。
要让学生理解“互为倒数”的含义,即倒数是表示两个数之间的关系,这两个数是相互依存的,倒数不能单独存在。如“不能说7/3是倒数”。
可以让学生根据对倒数意义的理解,说出几组倒数,看学生是否真正理解和掌握。
例2(教学求倒数的方法)
教材先安排找倒数的活动,从而初步体验找倒数的方法:调换分子、分母的位置。
在总结求倒数的方法时,要分三种情况:
一般求一个分数的倒数是交换分数的分子、分母的位置;
求整数的倒数是把整数看作分母是1的分数,再交换分子和分母的位置。
1和0的倒数的问题,让学生思考讨论得到结论。
在讨论的基础上归纳:根据倒数的意义,因为1×1=1,所以1的倒数是1;因为0与任何数相乘都是0,所以0没有倒数。
四、教学建议
1.注意相关的已有知识的复习。
本单元各部分知识都与前面的知识有密切的联系。
2.加强分数乘法的意义的教学。
对分数乘法的意义理解不仅是理解分数乘分数算理的关键,而且是求一个数的几分之几是多少的基础。因此一定要重视分数乘法意义的教学。
3.借助多种方式帮助学生学会分析数量关系的方法。
本单元的解决问题是由乘法意义的扩展产生的,数量关系比较特殊,借助多种方式帮助学生学会分析数量关系的方法。