1. 学科教学数学研究生期间都学什么
学科数学和其余数学专业在刚开始研一的时候并没有什么区别。首先第1年主要是学习基础理论课,比如事变函数和泛函分析,近似代数,偏微分方程理论。在以后将会学习学科数学所需要的基本的专业知识。
理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系,了解函数的有界性、单调性、周期性和奇偶性,理解复合函数及分段函数的概念,了解反函数及隐函数的概念,掌握基本初等函数的性质及其图形,了解初等函数的概念。
考研数学复习技巧
1、重视教材
数学复习的第一步就是读教材,复习过程中,也看到有的同学一上来就是辅导书,但坚持了一个多月,他们不得不再次回到教材上,这样不仅浪费了时间,而且也容易让自己变得浮躁。教材是基础,是数学复习中必须重视的知识,所以一定要把握,并好好利用。
当通过教材掌握了基础的定理、原理、公式,接下来就要认真做教材后面的题目,这是检验你对基础掌握的情况,如果遇到不会的题目或做错的题一定要真正分析、总结。最好准备一个错题本,它在后期复习中起的作用远远超过我的想象。
2、做题训练
当教材复习到一定程度后,考生应该根据自己的情况选择一本辅导书。并且要做题,而且是猛做。这个时候做起来就比较顺手了,开始基本上70%的题会做,不会的不要只看一遍答案就过了,一定要自己“会”做,不要出现一看题目就说:“我见过,在XXX书上,但是不会做”。
考研资料都大同小异,过多的追求新资料,不仅在经济上是一种负担,而且还会大量的出现重复的题目和题型,而因为你见过,所以觉得不难,会给人一种“数学很简单”的错觉。可取的方法是对一两本书反复研究,总结规律。新的题目是用来检验你的研究成果的。
2. 研究生数学学什么
矩阵分析,数值分析,应用数理统计。
数值分析的内容包括函数的数值逼近,数值微分和积分,非线性方程数值解,线性方程数值解,常微和偏微数值解等,都是以数学问题为研究对象的。
应用数理统计:研究随机现象统计规律性,利用概率论的理论对所要研究的随机现象进行多次的观察或试验,研究如何合理的获得数据,如何对所获得的数据进行整理,分析,如何对所关心的问题做出估计或判断的一门数学学科。
3. 数学类专业都学些什么
专业课有:大概两个方向,分析和代数。
数学分析,实变函数,复变函数,常微分方程,偏微分方程,泛函分析,概率论,抽象函数
高等代数,解析几何,抽象代数,微分几何,拓扑,图论,组合论,有限群表示论,李代数
等等
4. 数学研究生有哪些专业
数学研究生有哪些专业:
1、基础数学:适合做研究或从事教学
该专业需要学生具备扎实的数学理论基础,为高等院校和科研机构输送数学、应用数学及相关学科的研究生。
5. 数学专硕属于什么大类
属于教育类硕士。
1、数学专业考研方向一:基础数学(应用数学)硕士毕业后,可跨考经济、金融、会计等热门专业的博士研究生,也可以在相关企业、事业单位和经济、管理部门从事统计调查、统计信息管理、数量分析和开发等工作,或在科研、教育部门成为从事研究和教学工作的高级专门人才。
2、数学专业考研方向二:概率论与数理统计(概率与统计精算)硕士毕业后,学生可报考基础数学学科的各专业、计算机科学、概率统计、金融学等与数学相关的或交叉的、高新技术学科的博士研究生,也可选择出国到知名大学继续深造,如哈佛大学、麻省理工大学等。还可到企业从事数学应用开发工作。
3、数学专业考研方向三:数学工程的科学与工程计算系这个方向的同学在考博或出国方面占有很大优势。
6. 数学专业有哪些专业课程
数学专业的专业课程有:
一、数学分析
又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。
数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
二、高等代数
初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。
发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。
三、复变函数论
复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。
四、抽象代数
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用“群”的概念彻底解决了用根式求解代数方程的可能性问题。
他是第一个提出“群”的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。
五、近世代数
近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。
法国数学家伽罗瓦在1832年运用“群”的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出“群”的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。
参考资料来源:
网络—数学分析
网络—高等代数
网络—复变函数论
网络—抽象代数
网络—近世代数