导航:首页 > 数字科学 > 数学模型如何体现科学探究的

数学模型如何体现科学探究的

发布时间:2023-03-18 07:50:51

⑴ 科学的四步原理

科学的四步原理和具体解析拆蚂如下:
科学原理和方法论实质上是哲学上的方法论原理在各门具体的自然科学中的应用。作为科学,它本身又构成了一门软科学,它是为各门具体自然科学提供方法、原则、手段、途径的最一般的科学。自然科学作为一种高级复杂的知识形态和认识形式,是在人类已有知识的基础上,利用正确的思维方法、研究手段和一定的实践活动而获得的,它是人类智慧和创造性劳动的结晶。因此,在科学研究、科学发明和发现的过程中,是否拥有正确的科学研究方法,是能否对科学事业作出贡献的关键。正确的科学方法可以使研究者根据科学发展的客观规律,确定正确的研究方向;可以为研究者提供研究的具体方法;可以为科学的新发现、新发明提供启示和借鉴。因此现代科学研究中尤其需要注重科学方法论的研究和利用,这也就是我们要强调指出的一个问题。 一、科学实验法 科学实验、生产实践和社会实践并称为人类的三大实践活动。实践不仅是理论的源泉,而且也是检验理论正确与否的惟一标准,科学实验就是自然科学理论的源泉和检验标准。特别是现代自然科学研究中,任何新的发现、新的发明、新的理论的提出都必须以能够重现的实验结果为依据,否则就不能被他人所接受,甚至连发表学术论文的可能性都会被取缔。即便是一个纯粹的理论研究者,他也必须对他所关注的实验结果,甚至实验过程有相当深入的了解才行。因此,可以说,科学实验是自然科学发展中极为重要的活动和研究方法。 (一)科学实验的种类 科学实验有两种含义:一是指探索性实验,即探索自然规律与创造发明或发现新东西的实验,这类实验往往是前人或他人从未做过或还未完成的研究工作所进行的实验;二是指人们为了学习、掌握或教授他人已有科学技术知识所进行的实验,如学校中安排的实验课中的实验等。实际上两类实验是没有严格界限的,因为有时重复他人的实验,也可能会发现新问题,从而通过解决新问题而实现科技创新。但是探索性实验的创新目的明确,因此科技创新主要由这类实验获得。 从另一个角度,又可把科学实验分为以下类型。 定性实验:判定研究对象是否具有某种成分、性质或性能;结构是否存在;它的功效、技术经济水平是否达到一定等级的实验。一般说来,定性实验要判定的是“有”或“没有”、“是”或“不是”的,从实验中给出研究对象的一般性质及其他事物之间的联系等初步知识。定性实验多用于某项探索性实验的初期阶段,把注意力主要集中在了解事物本质特性的方面,它是定量实验的基础和前奏。 定量实验:研究事物的数量关系的实验。这种实验侧重于研究事物的数值,并求出某些因素之间的数量关系,甚至要给出相应的计算公式。这种实验主要是采用物理测量方法进行的,因此可以说,测量是定量实验的重要环节。定量实验一般为定性实验的后续,是为了对事物性质进行深入研究所应该采取的手段。事物的变化总是遵循由量变到质变,定量实验也往往用于寻找由量变到质变关节点,即寻找度的问题。 验证性实验:为掌握或检验前人或他人的已有成果而重复相应的实验或验证某种理论假说所进行的实验。这种实验也是把研究的具体问题向更深层次或更广泛的方面发展的重要探索环节。 结构及成分分析实验:它是测定物质的化学组分或化合配圆物的原子或原子团的空间结构的一种实验。实际上成分分析实验在医学上也经常采用,如血、尿、大便的常规化验分析和特种化验分析等。而结构分析则常用于有机物的同分异构现象的分析。 对照比较实验:指把所要研究的对象分成两个或两个以上的相似组群。其中一个组群是已经确定其结果的事物,作为对照比较的标准,称为“对照组”,让其自然发展。另一组群是未知其奥秘的事物,作为实验研究对象,称为实验组,通过一定的实验步骤,判定研究对象是否具有某种性质。这类实验在生物学和医学研究中是经常采用的,如实验某种新的医疗方案或药物及营养晶的作用等。 相对比较实验:为了寻求两种或两种以上研究对象之间的异同、特性等而设计的实验。即把两种或两种以上的实验单元同时进行,并作相对比较。这种方培御塌法在农作物杂交育种过程中经常采用,通过对比,选择出优良品种。 析因实验:是指为了由已知的结果去寻求其产生结果的原因而设计和进行的实验。这种实验的目的是由果索因,若果可能是多因的,一般用排除法处理,一个一个因素去排除或确定。若果可能是双因的,则可以用比较实验去确定。这就与谋杀案的侦破类似,把怀疑对象一个一个地排除后,逐渐缩小怀疑对象的范围,最终找到谋杀者或主犯,即产生结果的真正原因或主要原因。 判决性实验:指为验证科学假设、科学理论和设计方案等是否正确而设计的一种实验,其目的在于作出最后判决。如真空中的自由落体实验就是对亚里士多德错误的落体原理(重物体比轻物体下落得快)的判决性实验。 此外,科学实验的分类中还包括中间实验、生产实验、工艺实验、模型实验等类型,这些主要与工业生产相关。 (二)科学实验的意义和作用 1.科学实验在自然科学中的一般性作用 人类对自然界认识的不断深化过程,实际是由人类科技创新(或称为知识创新)的长河构成的。科学实验是获取新的、第一手科研资料的重要和有力的手段。大量的、新的、精确的和系统的科技信息资料,往往是通过科学试验而获得的。例如,“发明大王”爱迪生,在研制电灯的过程中,他连续13个月进行了两千多次实验,试用了1600多种材料,才发现了白金比较合适。但因白金昂贵,不宜普及,于是他又实验了6 000多种材料,最后才发现炭化了的竹丝做灯丝效果最好。这说明,科学实验是探索自然界奥秘和创造发明的必由之路。 科学实验还是检验科学理论和科学假说正确与否的惟一标准。例如,科学已发现宇宙间存在四种相互作用力,它们之间有没有内在联系呢?爱因斯坦提出“统一场论”,并且从1925年开始研究到1955年去世为止,一直没有得到结果,因此许多专家怀疑“统一场”的存在。但美国物理学家温伯格和巴基斯坦物理学家萨拉姆由规范场理论给出了弱相互作用和电磁相互作用的统一场,并得到了实验证明而被公认。这表明理论正确的标准是实验结果的验证,而不是权威。 科学实验是自然科学技术的生命,是推动自然科学技术发展的强有力手段,自然界的奥秘是由科学实验不断揭示的,这一过程将永远不会完结。 2.科学实验在自然科学中的特殊作用 自然界的事物和自然现象千姿百态,变化万千,既千差万别,又千丝万缕的相互联系着,这就构成错综复杂的自然界。因此在探索自然规律时,往往会因为各种因素纠缠在一起而难以分辨。科学实验特殊作用之一是:它可以人为地控制研究对象,使研究对象达到简化和纯化的作用。例如,在真空中所做的自由落体实验,羽毛与铁块同时落下,其中就排除了空气阻力的干扰,从而使研究对象大大的简化丁。 科学实验可以凭借人类已经掌握的各种技术手段,创造出地球自然条件下不存在的各种极端条件进行实验,如超高温、超高压、超低温、强磁场、超真空等条件下的实验。从这些实验中可以探索物质变化的特殊规律或制备特殊材料,也可以发生特殊的化学反应。 科学实验具有灵活性,可以选取典型材料进行实验和研究,如选取超纯材料、超微粒(纳米)材料进行实验。生物学中用果蝇的染色体研究遗传问题同样体现了科学实验的灵活性。 科学实验还具有模拟研究对象的作用,如用小白鼠进行的病理研究等。科学实验可以为生产实践提供新理论、新技术、新方法、新材料、新工艺等。一般新的工业产品在批量生产前都是在实验室中通过科学实验制成的,晶体管的生产就是如此。 科学实验就是自然科学研究中的实践活动,尊重科学实验事实,就是坚持唯物主义观点,无视实验事实,或在实验结果中弄虚作假,都是唯心主义的作法,最终必然碰壁。任何自然科学理论都必须以丰富的实验结果中的真实信息为基础,经过分析、归纳,从而抽象出理论和假说来。一个科学工作者必须脚踏实地,这个实地就是科学实验及其结果,因此,唯物主义思想是每一个自然科学工作者都应该具备的基本素质之一。 二、数学方法 数学方法有两个不同的概念,在方法论全书中的数学方法指研究和发展数学时的思想方法,而这里所要阐述的数学方法则是在自然科学研究中经常采用的一种思想方法,其内涵是;它是科学抽象的一种思维方法,其根本特点在于撇开研究对象的其他一切特性,只抽取出各种量、量的变化及各量之间的关系,也就是在符合客观的前提下,使科学概念或原理符号化、公式化,利用数学语言(即数学工具)对符合进行逻辑推导、运算、演算和量的分析,以形成对研究对象的数学解释和预测,从而从量的方面揭示研究对象的规律性。这种特殊的抽象方法,称为数学方法。 (二)运用数学方法的基本过程 在科学研究中,经常需要进行科学抽象,并通过科学抽象,运用数学方法去定量揭示研究对象的规律性,其基本过程是:(1)先将研究的原型抽象成理想化的物理模型,也就是转化为科学概念;(2)在此基础上,对理想化的物理模型进行数学科学抽象(科学抽象的一种形式),使研究对象的有关科学概念采用符号形式的量化,达到初步建立起数学模型,即形成理想化了的数学方程式或具体的计算公式;(3)对数学模型进行验证,即将其略加修正后运用到原型中去,对其进行数学解释,看其近似的程度如何:近似程度高,说明这是一个较好的数学模型,反之,则是一个较差的数学模型,需要重新提炼数学模型。这一基本过程可用简图表示如下: 数学方法又称数学建模法,之所以其第一步要抽象为物理模型,这是因为数学方法是一种定量分析方法,而自然科学中的量绝大多数都是物理量,因此数学模型实质表达的是各物理量之间的相互关系,而且这种关系需要表达成数学方程式或计算公式。而验证过程则通常为研究对象中各种物理量的测定(通过实验)过程。因此,数学建模过程的第一步又常称为物理建模,换言之,就是说没有物理建模就难以进行数学建模;但是,若只有物理建模,就难以形成理论性的方程式或计算公式,就难以达到定量分析研究的目的。 (二)数学方法的特点 l.高度的抽象性:各门自然科学乃至社会科学虽然都是抽象的科学,都具有抽象性,可是数学的抽象程度更高,因为在数学中已经没有了事物的其它特征,仅存在数和符号,它只表明符号之间的数量关系和运算关系等。也只有这样才能定量地揭示出研究对象的规律性。 2.高度的精确性:这是因为可以通过数学模型进行精确的计算,而且只有精确(即近似程度高)的数学模型才是人们最终所需要的数学模型。 3.严密的逻辑性:这是因数学本身就是一门逻辑严谨的科学,同时运用数学方法解决和研究自然规律时,一般总是在已掌握大量的、充分和必要的数据(即实验信息)的基础上,并首先运用逻辑推理方法建立物理模型之后才去建立数学模型的,因此数学模型中必然会包含更加严密的逻辑性。 4.充满辩证特征:因为在数学模型中的量往往是一个符号,如F=ma就代表了牛顿第二定律,这其中的三个量的大小既是可以变化的,又是相互关联的。因此数学模型本来就体现了辩证关系的两大主要特征:变化特征和联系特征。 5.具有应用的广泛性:华罗庚教授曾指出:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学”。这是因为世上万物的变化无不由运动而产生,无不遵从由量变到质变的规律性,因此只有通过定量研究才能更深刻揭示自然规律,才能更准确的把握住量变到质变的关键——度的问题。 6.随机性:随机性是指偶然性中有必然性,实验信息是偶然的,通过数学建模,从多个偶然数据(分立的)中往往可以给出必然的结果(量之间连续变化的关系),即规律性的结论。 (三)数学方法的种类 1.自然事物和现象的分类 数学方法及数学建模的应用依赖于自然事物和现象的性质,而自然事物和现象的种类繁多,数量是无限的。在大干世界中,无法找到两个完全一样的东西,这是指再相仿的东西之间也必然会有差别。因此定量研究事物规律性时,数学模型不可能是针对某一个别事物而建立的,而总是针对同一类事物和现象所具有的共同规律性而建立的。这就要求:根据数学建模的需要,按一定的因素把事物进行分类,以便更方便地运用数学方法。概括起来,自然界中多种多样的事物和现象一般可分为四大类:第一类是有确定因果关系的,称为必然性的自然事物和自然现象;第二类是没有确定因果关系的,称为随机的自然事物和现象;第三类是界限不明白,称为模糊的自然事物和自然现象;第四类是突变的自然事物和自然现象。必然事物和现象就如同种豆得豆、种瓜得瓜一样,因果关系完全确定。而随机事物和现象就如同气体分子的相互碰撞一样,其中某两个分子是否很快会发生碰撞,没有必然性,但气体分子间确实经常发生碰撞,所以可以说分子间发生碰撞是必然的,但某两个分子的碰撞却是随机的。对模糊的事物和自然现象的理解,也可以用一个实例说明。许多国界都是以河流的主河道中线划分的,中线究竟在哪里,只能是一个模糊的界限,无法严格划分。因为河水有多的时候,也有少的时候,洞水在流动,波浪在不断地拍打着河岸,因此不可能进行绝对精确的测量,所以其界限是模糊的。地震的突然发生、桥梁的突然断裂折坠等则属于突然性事物和现象。 2.数学方法的分类 按照自然事物和现象的类型,根据理论计算和解决实际问题的需要,人们创立了许多种数学方法,概括起来主要有以下几种:常量数学方法:古今初等数学所运用的方法,便是常量数学方法,主要有算术法、代数法、几何法和三角函数法。常量数学方法被用于定量揭示和描述客观事物在发展过程中处于相对静止状态时的数量关系和空间形式(或结构)的规律性。变量数学方法:它是定量揭示和描述客观事物运动、变化、发展过程中的各量变化与量变之间的关系的一种数学方法。其中最基本的是解析几何法和微积分法。解析几何法由数学家迪卡尔创立,是用代数方法研究几何图形特征的一种方法。微积分(通常称为高等数学)方法是牛顿和莱布尼茨创立的。这种方法主要应用于求某种变化率(如物体运行速率、化学反应速率等);求曲线(曲面)切线(切平面);求函数极值;求解振动方程和场方程等问题。 必然性数学方法:这种方法应用于必然性自然事物和现象。描述必然性自然事物和现象的数学工具,一般是方程式或方程组。其中主要有:代数方程、函数方程、常微分方程、偏微分方程和差分方程等。利用方程可以从已知数据,在遵循推理规律和规则的条件下,推算出未知数据,如这种方法可以根据热力学方程计算出炼钢炉各部分的温度分布。因而可通过理论计算,确定和选取炼钢炉的最佳设计方案。 随机性数学方法:指定量研究、揭示和描述随机事物和随机现象领域的规律性的一种数学方法。它主要含概率论方法和数理统计方法。 突变的数学方法:指定量研究只揭示和描述突变事物和突变现象规律性的一种数学方法。它是20世纪70年代由法国数学家托姆创立的。托姆用严密的逻辑和数学推导,证明在不超过四个控制因素的条件下,存在着七种不连续过程的突变类型,它们分别是:折转型,尖角型,燕尾型,蝴蝶型,双曲脐点型,椭圆脐点型,抛物脐点型。这些突变数学方法和突变理论,对于解决地质学研究领域中的复杂生突变事件(如地震预测)和现象十分有用。有专家预言:突变的数学方法,可能成为解决地质学领域复杂问题的一种强有力的数学工具。 模糊性数学方法:指用定量方法去研究、揭示和描述模糊事物和模糊现象和规律性的一种数学方法。自然界存在着大量模糊事物、模糊现象和模糊信息,无法用精确数学方法处理。模糊数学方法的创立,才使人类找到了处理该类问题的有效方法,人们称这种方法的效果是“模糊中见光明”。“模糊数学”并非数学的模糊,这种数学本身仍是逻辑严密的精确数学,只是因用于处理模糊事物而得名。 公理化方法:指从初始科学概念和一些不证自明的数学公理出发遵循逻辑思维规律和推理规则,运用正确逻辑推理形式,对一些相关问题进行处理,从而建立起数学模型的一种特殊方法。公理化方法由古希腊数学家欧几里得首创,并构成了欧氏几何学理论体系,公理化方法的核心是研究如何把一种科学理论公理化,进而建成一个公理化理论体系。这种体系中首先建立公理,即把某学科中一些初始科学概念公理化,然后由公理推演出定理及其他,从而构成一个公理化理论体系。 (四)提炼数学模型的一般步骤 所谓提炼数学模型,就是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。这既是数学方法中最关键的一步,也是最困难的一步。提炼数学模型,一般采用以下六个步骤完成: 第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。 第二步:确定几个基本量和基本的科学概念,用以反映研究对象的状态。这需要根据已有的科学理论或假说及实验信息资料的分析确定。例如在力学系统的研究中,首先确定的摹本物理量是质主(m)、速度(v)、加速度(α)、时间(t)、位矢(r)等。必须注意确定的基本量不能过多,否则未知数过多,难以简化成可能数学模型,因此必须诜择出实质性、关键性物理量才行。 第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。 第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么? 第五步:按数学模型求出结果。 第六步:验证数学模型。验证时可根据情况对模型进行修正,使其符合程度更高,当然这以求原模型与实际情况基本相符为原则。 (五)数学方法在科学中的作用 1.数学方法是现代科研中的主要研究方法之一 数学方法是各门自然科学都需要的一种定量研究方法,尤其在当今世界科学技术飞速发展的时代,计算机已得到广泛应用,即使一个极其复杂的偏微分方程的求解问题也同样可以通过离散化手段进行数字求解。如航磁法、地震法探矿的数据处理问题就异常复杂,其数学模型就是一个偏微分波动(场)方程。当然此类问题都需要在超大型专门计算机构进行的。正因为如此,许多过去无法进行定量研究的问题,现在一般都可以通过数学建模进行定量研究。当然,研究中的关键就是如何建模的问题了。同时,只有通过定量研究才能更深刻、更准确地揭示自然事物和自然现象内在的规律性。否则,一切科学理论的建立和理论研究的精确化就难以实现。 马克思曾指出:“一种科学只有当它达到了能够运用数学时,才算真正发展了”。这正如我国数千年的传统中药,因其药效及有效成分没能达到定量研究的程度,因而其发展迟缓。当今世界各主要国家都在对中国的中药进行定量分析研究,某些中药已被它国制成精品并拥有专利权向我国倾销,这充分体现了定量研究的重要意义。 2.数学方法为多门科研提供了简明精确的定量分析和理论计算方法 数学语言(方程式或计算公式)是最简明和最精确的形式化语言,只有这种语言才能给出定量分析的理论和计算方法,通过理论计算给出的信息,可以给人们提供某种预测、某种预言。这种预示性的信息,既可能带来某种发现、发明和创造,也可能导致极大的经济和社会效益,从而使人们格外地感受到它的分量。 3.数学方法为多门科学研究提供逻辑推理、辩证思维和抽象思维的方法 数学作为自然科学研究的可靠工具,是因为它的理论体系是经过严密逻辑推证得到的,因此它也为科学研究提供了众多逻辑推理方法;同时数学也是一种辩证思维和抽象思维的语言,因此也同样为科学研究提供了辩证思维和抽象思维的方法。 三、系统科学方法 系统科学是关于系统及其演化规律的科学。尽管这门学科自20世纪上半叶才产生,但由于其具有广泛的应用价值,发展十分迅速,现已成为一个包括众多分支的科学领域。它包括有:一般系统论、控制论、信息论、系统工程、大系统理论、系统动力学、运筹学、博弈论、耗散结构理论、协同学、超循环理论、一般生命系统论、社会系统论、泛系分析、灰色系统理论等分支。这些分支,各自研究不同的系统。自然界本身就是一个无限大、无限复杂的系统,在自然界中包括着许许多多不同的系统,系统是一种普遍存在。一切事物和过程都可以看作组织性程度不同的系统,从而使系统科学的原理具有一般性和较高的普遍性。利用系统科学的原理,研究各种系统的结构、功能及其进化的规律,称为系统科学方法,它已得到各研究领域的广泛应用,目前尤其在生物学领域(生态系统)和经济领域(经济管理系统)中的应用最为引人注目。系统科学研究有两个基本特点:其一是它与工程技术、经济建设、企业管理、环境科学等联系密切,具有很强的应用性;其二是它的理论基础不仅是系统论,而且还依赖于各有关的专门学科,与现代一些数学分支学科有密切关系。正因为如此,人们认为系统科学方法一般指研究系统的数学模型及系统的结构和设计方法。因此,我们下面将仅就上述意义上系统科学方法作简要论述。 (一)系统科学方法的特点和原则 所谓系统科学方法,是指用系统科学的理论和观点,把研究对象放在系统的形式中,从整体和全局出发,从系统与要素、要素与要素、结构与功能以及系统与环境的对立统一关素中,对研究对象进行考察、分析和研究,以得到最优化的处理与解决问题的一种科学研究方法。系统科学方法的特点和原则主要有:整体性、综合性、动态性、模型化和最优化五个方面。 (1)整体化特点和原则:这是系统科学方法的首要特点和原则。所谓整体性特点和原则,是指把研究对象作为一个有机的整体系统去看待。虽然系统中每一个要素,就其单独功能而言是有限的,但却是系统所必有的要素。就整体系统而言,缺少了任何一个要素都难以发挥整个系统的功能。这正如一辆汽车一样,它是一个完整的系统,任何一个部件出现缺损都可能影响整个系统功能的发挥,甚至一个微不足道的螺丝钉的缺损都可能造成某种事故的发生。因此必须把研究对象作为有了质变的有机整体去看待。这里的计算关系应该是1+1>2,这就如同“二人一条心,黄土变成金’’的格言所表示的含义类似,即系统的整体功能大于各要素的功能之和。这被称为系统各要素功能的非加性规律。这一规律性要求人们在对系统的研究中,必须从有机整体的角度去探讨系统与组成它的各要素之间的关系,而且另一方面,需要研究系统与周围环境之间的联系和关系,从有机整体的角度去发挥系统的功能,把握系统的性质与运动规律。 (2)综合性特点和原则:这一特点和原则包括两方面的含义:一方面指客观事物和工程都是一个系统,是由诸多要素按一定规律组成的复杂的综合体,有其特殊的性质、规律和功能;另一方面指,对任何客观事物和具体系统的研究,都必须进行综合考察,即从它的组成部分、结构、功能及环境的相互联系、相互作用和相互制约的诸方面进行综合研究。而系统的最优化目标就是根据系统科学方法对研究对象进行综合考察和研究的结果来确定的。 (3)动态性特点和原则:指在物质系统的动态过程中揭示它们的性质、规律和功能。因为客观世界中实际存在的一切系统,无论是在内部的各要素之间,或系统与环境之间,都存在着物质、能量、信息的流通和交换,因此实际系统都处于动态过程之中,而不是处于静态,因此就必须坚持动态性原则。 (4)模型化特点和原则:指的是在考察比较大且复杂的系统(如大型工程项目)时,因复杂系统因素众多,关系复杂,一时难以完全把所有因素和关系都搞清楚,甚至有的因素也没有必要完全弄清楚,而开始研究和处理问题时又往往要求进行定量分析,这就需要建立数学模型,即将系统加以简化抽象为理想模型,从而通过对模型的 实验、研究,达到较好地解决实际问题的目的。 (5)最优化原则:指在运用系统科学方法解决实际问题时,从多个可能的方案中选择出最佳方案,使系统的运行处于最佳状态,达到发挥最优功能的目标。按照最优化原则,系统内部各要素之间与系统和环境之间的联系或结构都必须处于最优状态,以发挥系统的特殊功能。 (二)常用的几种系统科学方法(简) 1 系统分析法 2 信息方法 3 功能模拟方法 4 黑箱方法 5 整体优化方法

⑵ 如何在中学数学教学中渗透数学建模思想

中学数学教学中数学建模思想的渗透
/郑来兵
[导读]新课程标准明确提出中学数学要讲背景、讲应用。
一、数学建模与数学建模意识
在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的。其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现。也就是说,你要对复杂的实际问题进行分析,发现其中可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型,建立数学模型的这个过程就称为数学建模。着名数学家怀特海曾说:“数学就是对于模式的研究”。所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构。数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。 举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题(自由落体运动)都可以转化为二次函数来解决。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。由此,我们可以看到,培养学生运用数学建模解决实际问题的能力,关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断地引导学生用数学思维的观点去观察、分析和表示各种事物的关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。具体的讲,数学模型方法的操作程序大致上为:
??? 实际问题→分析抽象→建立模型→数学问题 ?????????↑????????????????????????↓ ???????检验 ← 实际解 ← 释译 ← 数学解
二、在数学建模活动中要充分重视学生的主体性
提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。中学数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。 三、处理好数学建模的过程与结果的关系
我国的中学数学新课程改革已进入全面实施阶段。新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。比如正方体截面切割的形状,用一个平面去截正方体,截面的形状是什么样的?
学习目标:通过想象和操作,探究正方体截面的形状。 问题串:
1.给出分类的原则(例如:按截面图形的边数分类)。按照你的分类原则,能得到多少种不同的截面?设计一种方案,找到截得这些形状截面的方法,并在正方体中画出示意图。
2.如果截面是三角形,你认为可以截出几种不同的三角形? 3.如果截面是四边形,你认为可以截出几种不同的四边形? 4.证明上面的结果。
5.截面多边形的边数最多有几条?请说明理由。
6.截面可能是正方形吗?可能有几种?画出示意图。 7.如果截面是三角形,其面积最大是多少?画出示意图。 8.你还能提出哪些相关的数学问题?
这个问题就可以根据不同的学生提出不同的要求,如:利用薯仔、萝卜或橡皮泥通过切割实验进行研究;用透明材料制作一个中空的正方体,留出注水口,注入有色水,通过观察水面形状的方式进行实验研究;利用电脑或图形计算器。借助某些软件(如几何画板,Z+Z智能平台)进行模拟实验研究;空间想象;证明你的结论。
四、数学建模教学与素质教育 数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的体验。由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。
1.构建建模意识,培养学生的转换能力
恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机,要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法提出新知识,激发学生的求知欲,但不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习、研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据实际需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生的数学建模意识。 2.注重直觉思维,培养学生的想象能力
众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等。通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性。 3.灌输“构造”思想,培养学生的创新能力
“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。 当然,数学建模在现在的中学数学教育中的地位和作用更加重要。但究竟如何在中学搞好数学建模活动,更好地发挥数学建模的作用,仍将是一个漫长而曲折的过程,是我们广大中学教师和教育工作者所思考和探索的问题。

⑶ ★数学模型与物理模型的区别是什么★

★数学模型是指将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。
一句话, 就是把实际问题抽象成数学问题, 并分析解答.
分类要有分类的标准,比如按实际问题所在的领域分类,可有:
医学数学模型
气象学数学模型
经济学数学模型
社会学数学模型
等等.
要是按所用到的数学学科来分类,可有
几何模型
方程模型
图论模型
泛函模型
等等.
分类其实五花八门.

方程是一个数学概念, 如果你的实际问题建立了方程,你的模型可以称为一个方程模型.

★物理模型就是用物理学的概念和理论来描述抽象现实问题,特点是
舍弃次要因素,抓住主要因素,从而突出客观事物的本质特征,这就叫构建物理模型。构建物理模型是一种研究问题的科学的思维方法。
物理模型一般可分三类:物质模型、状态模型、过程模型。

★数学模型与物理模型之间究竟有何区别?
这其实就是数学和物理的区别, 数学和物理的联系很紧密, 很多模型你不能单纯地说是物理还是数学模型.当然数学模型更纯粹和抽象. 自然科学的研究一般思路可以说是先建立物理模型, 再抽象成数学模型, 再由解算结果反过来反映物理意义, 进而得出实际意义.

满意与否?

⑷ 关于数学模型的创新性体现在哪里

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。

我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。

数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。

应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。

邬利循弼庄襄迩煌工皋鲍栩杳雟必敏形占镝为庄

⑸ 如何培养学生的数学模型思维

1如何有效地帮助学生构建数学模型?在数学教学中构建学生的数学建模意识与素质教育所要求的培养学生的创造性思维能力是相辅相成,密不可分的。要真正培养学生的创新能力,今天,朴新小编给大家带来数学教学方法.

1、为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。北京大学附中张思明老师对此提供了非常典型的事例:他在大街上看到一则广告:“本店承接A1型号影印。”什么是A1型号?在弄清了各种型号的比例关系后,他便把这一材料引入到初中“相似形”部分的教学中。这是一般人所忽略的事,却是数学教师运用数学建模进行教学的良好机会。

2.快乐实践——让数学课堂生活化、探究化

实践是创造的源泉。脱离了实践活动的数学将成为无源之水,无本之木。现代教育思想认为:数学教学应该是数学活动的教学,学生的思维活动只有通过数学活动才有可能被激活,才能迸射出创新的火花。因此,在实际教学中就要把课堂知识的学习和社会体验结合起来,使学生的学习渠道多样化,学习的方式生活化,用动手实践这把"钥匙"开启学生紧闭的心智,唤醒学生沉睡的潜能,激活学生封存的记忆,放飞学生囚禁的情愫,让学生在动手实践中对知识的认识和体验不断深化、丰满、鲜活起来。

3.创设情景调动课堂气氛

从心理学的角度来讲,小学生有着好奇心理、疑问心理、爱美心理和活泼好动的特点。作为老师因从这些方面多去思考,充分的发挥小学生非智力因素在学习中的作用。在课堂中创设出学与"玩"交融为一体的教学方法,使学生在"玩"中学,在学中"玩"的情景。在课堂上创造情景的方法有很多,我们要根据自己班级学生的实际情况选择合适的方法,提供具体的内容,生动活泼的形式,新奇动人的事物,以恰当的手法表现出来,让学生真正的体会到其中的乐趣。如我在教作文《记一次游戏》时,我创设了这样一个课堂情景。我与学生一起玩贴鼻子的游戏,自然,这个游戏其乐无穷,学生个个开怀大笑。在游戏中,我让学生仔细观察游戏过程以及人物的语言、动作、神态,同时谈谈自己的体会或感触,一节课里学生的热情始终高涨。这样,既解决了学生写作文"写什么","怎样写"两大老大难问题,又提高了学生的学习兴趣,这样课堂气氛会更活跃些的。

4激发学生数学学习兴趣

1.增加学生互动,提高学习兴趣

在教学完成以后,要下意识地将学生分成不同的几类,让学习能力较强的学生引领学习能力较弱的学生学习,增加学生之间的互动,让学生之间互相交流、帮助,从而在互相帮助中提升学生对学习的兴趣,以开拓学生的数学思维。

2.改变教学方法,开拓学生的数学思维

在教授知识的环节,教师应该关注学生的兴趣所在,同时相应地改变自己的教学方法,满足学生的兴趣,通过实例或是教学辅助工具来讲述知识,开拓学生的思维,不要一味枯燥地只是进行单纯的知识讲解,过多的理论不会吸引学生的兴趣,要创新自己的教学方法,实现教学目标,达到教学目的。区分知识的难易程度,合理安排所讲知识的次序,由易及难,不断加深知识的深度,开拓知识的广阔面,开拓学生的思维,提高学生的学习兴趣。同时,要从多个角度帮助学生进行思考,将知识彻底吃透,从而开拓学生的知识面,开拓学生对于学习数学的思维,加深学生的理解。

3.讲练结合,开拓思维,提高效率

课堂不只是一个讲授知识的过程,同时也是一个巩固知识的环境,在讲授完知识以后及时地对所讲知识进行总结练习是一个很重要的过程,这样有利于学生加深对知识的理解运用,有利于提高学生学习的效率。教学的目的就是让学生能够掌握知识并加以利用,因此,要注重学生的学习效率。教师也可以在讲授的过程中及时地将练习题目分配给大家,以供学生练习掌握知识。课堂训练结束以后,教师可以给学生布置适量的课后巩固习题,加深学生对知识的理解,拓宽学生的思维,布置一些有利于开拓学生思维的练习,提高其学习的兴趣,以更好地学习并利用知识。在此过程中,要努力地引领学生,多做开拓思维层次的训练,提高其学习能力。

⑹ 数学建模的思路是什么

说就是把实际问题用数学语言抽象概括,从数学角度来反映或近似地反映实际问题,得出的关于实际问题的数学描述。其形式是多样的,可以是方程(组)、不等式、函数、几何图形等等。

在数学建模中常用思想和方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法。

模型准备

了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

⑺ 如何在小学数学教学中渗透数学建模思想

在《数学课程标准》我们发现这样一句话——“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”,这实际上就是要求把学生学习数学知识的过程当做建立数学模型的过程,并在建模过程中培养学生的数学应用意识,引导学生自觉地用数学的方法去分析、解决生活中的问题。明确要求教师在教学中引导学生建立数学模型,不但要重视其结果,更要关注学生自主建立数学模型的过程,让学生在进行探究性学习的过程中科学地、合理地、有效地建立数学模型。
一、数学模型的概念
数学模型是对某种事物系统的特征或数量依存关系概括或近似表述的数学结构。数学中的各种概念、公式和理论都是由现实世界的原型抽象出来的,从这个意义上讲,所有的数学知识都是刻画现实世界的模型。狭义地理解,数学模型指那些反映了特定问题或特定具体事物系统的数学关系结构,是相应系统中各变量及其相互关系的数学表达。数学建模就是建立数学模型来解决问题的方法。《数学课程标准》安排了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四块学习领域,强调学生的数学活动,发展学生的数感、符号感、空间观念、以及应用意识与推理的能力。这些内容中最重要的部分,就是数学模型。在小学阶段,数学模型的表现形式为一系列的概念系统,算法系统,关系、定律、公理系统等。
二、小学数学教学渗透数学建模思想的可行性
数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。数学学习只有深入到“模型”、“建模”的意义上,才是一种真正的数学学习。这种“深入”,就小学数学教学而言,更多地是指用数学建模的思想和精神来指导着数学教学,“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等多方面得到进入和发展。”
对数学建模这个概念来讲也许是新的,但回想我们的日常教学不难发现我们的学生已经有数学建模的思想或意识,只不过没有从理论的角度把它概括出来而已。例如,在以往教学求比一个数多几的应用题时,经常碰到这样一个例题“小明家养了6只公鸡,养的母鸡只数比公鸡多3 只,母鸡有几只?”在教学此例时老师们都是采用让学生摆、说等教学活动来帮助学生分析数量关系,理解“同样多的部分”,但教学效果并没有我们老师想象的那么好,一般同学们在解释数量关系式6+3=9时,母鸡和公鸡是不分的,极大部分学生都会说6只公鸡加3只母鸡等于9只母鸡。为什么学生不会用“同样多的部分”去描述母鸡的只数,其原因是十分明显的,那就是学生在操作时头脑中已经对现实问题进行简化,并建立了一个有关母鸡只数求法的数学模型,这个模型显然是一种叠加模型,即6+3=9(只),而6表示什么在模型中已经是无关紧要,因为实际问题最终要解决的是数量问题。从以上这个教学实例至少可以说明两点;其一,小学生在解决实际问题时有他自己的数学模型,有他自圆其说的解读数学模型的方法,因此,小学生也有数学建模能力 。其二,当学生的数学模型一旦建立了以后,即使他的模型是不合理或不规范的,但外人很难改变他的模型结构。
三、小学生如何形成自己的数学建模
一、创设情境,感知数学建模思想。
数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。情景的创设要与社会生活实际、时代热点问题、自然、社会文化等与数学问题有关的各种因素相结合,让学生感到真实、新奇、有趣、可操作,满足学生好奇好动的心理要求。这样很容易激发学生的兴趣,并在学生的头脑中激活已有的生活经验,也容易使学生用积累的经验来感受其中隐含的数学问题,从而促使学生将生活问题抽象成数学问题,感知数学模型的存在。
如教学平均数一课,新课伊始出示两个小组一分钟做题道数:
第一组 9 8 9 6
第二组 7 10 9 8
教师提问:哪组获胜,为什么?
这时出示,第一组请假的一位同学后来加入比赛。
第一组 9 8 9 6 8
第二组 7 10 9 8
师:根据比赛成绩我们判定一组获胜。
此时有学生提出异议:虽然第一组做对的总道数比第二组多,但是两个队的人数不同,这样比较不公平。
师:那怎么办呢?
生:可以用平均数进行比较。
师:什么是平均数?
学生根据自己的生活经验进行总结。
本节课平均数这一抽象的知识隐藏在具体的问题情境中,学生在两次评判中解读、整理数据,产生思维冲突,从而推进数学思考的有序进行。学生从具体的问题情境中抽出平均数这一数学问题的过程就是一次建模的过程,
二、参与探究,主动建构数学模型
数学家华罗庚通过多年的学习、研究经历总结出:对书本中的某些原理、定律、公式,我们在学习的时候不仅应该记住它的结论、懂得它的道理,而且还应该设想一下人家是怎样想出来的,怎样一步一步提炼出来的。只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
如教学圆锥的体积一课:
1、回顾、猜想:
师:请同学们回忆我们在学习圆柱的体积推导过程中,应用了哪些数学思想方法?
生:运用了转化的方法。
师:猜一猜圆锥的体积能否转化成已经学过的图形的体积?它会与学过的哪种立体图形有关?
学生大胆进行猜想,有的猜能转化成圆柱、有的猜能转化成长、正方体。
2、动手验证
师:请同学们利用手中的学具进行操作,研究圆锥体积的计算方法。
教师给学生提供多个圆柱、长方体、正方体和圆锥空盒(其中圆柱和圆锥有等底等高关系的、有不等底不等高关系的,圆锥与其他形体没有等底或等高关系)、沙子等学具,学生分小组动手实验。
3、反馈交流
生1:我们选取了一个圆锥和一个正方体进行实验,将正方体中倒满沙子,然后倒入圆锥容器中,到了四次,还剩下一些,发现圆锥体与这个圆柱体之间没有关系。
生2:我们组选取的是圆锥和圆柱,这个圆锥与这个圆柱之间也没存在关系,然后我们换了一个圆柱,这个圆柱的体积是这个圆锥体积的三倍。
4、归纳总结。
师:那么存在3倍关系的圆柱和圆锥的底面有什么关系?它们的高又有什么关系?
生3:底面积相等,高也相等。
师:圆柱的体积和同它等底等高圆锥的体积的有什么关系?
生:圆柱的体积是圆锥体积的3倍。
生:圆锥的体积是同它等底等高的圆柱体权的1/3。
师:是不是所有的等底等高的圆柱、圆锥都存在这样的关系?请每个组都选出这样的学具进行操作验证。
生:汇报后师板书:
圆锥的体积等于同它等底等高的圆柱体积的1/3。
师:如果没有圆柱这一辅助工具,我们怎样计算圆锥的体积?
生:圆锥的体积等于底面积乘高乘1/3。
在上述教学过程中,教师提供丰富的实验材料,学生需要从中挑选出解决问题必须的材料进行研究。学生的问题不是一步到位的,通过不断地猜测、验证、修订实验方案,再猜测、再验证这样的过程,逐步过渡到复杂的、更一般的情景,学生在主动探索尝试过程中,进行了再创造学习,以抽象概括方式自主总结出圆锥体积计算公式。这一环节的设计,不仅发展了学生的策略性知识,同时让学生经历猜测与验证、分析与归纳、抽象与概括的数学思维过程。学习过程中学生有时独立思考,有时小组合作学习,有时是独立探索和合作学习相结合,学生在新知探索中充分体验了数学模型的形成过程。
三、解决问题,拓展应用数学模型
用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学知识解决问题的能力,让学生体验实际应用带来的快乐。解决问题具体表现在两个方面:一是布置数学题作业,如基本题、变式题、拓展题等;二是生活题作业,让学生在实际生活中应用数学。通过应用真正让数学走入生活,让数学走近学生。用数学知识去解决实际问题的同时拓展数学问题,培养学生的数学意识,提高学生的数学认知水平,又可以促进学生的探索意识、发现问题意识、创新意识和实践意识的形成,使学生在实际应用过程中认识新问题,同化新知识,并构建自己的智力系统。
如在学生掌握了速度、时间、路程之间关系后,先进行单项练习,然后出示这样的变式题:
1、汽车4小时行驶了240千米,12小时可行驶多少千米?
2、火车的速度是每小时130千米,火车早上8:00出发,14:00到站,两站之间的距离是多少千米?
学生在掌握了速度乘时间等于路程这一模型后,进行变式练习,学生基本能正确解答,说明学生对基本数学模型已经掌握,并能够从4小时行驶了240千米中找到需要的速度,从8:00至14:00中找到所需时间。虽然两题叙述不同,但都可以运用同一个数学模型进行解答。掌握了数学模型,学生解答起数学问题来得心应手。
又如学习了圆的周长后设计这样的题目:怎样利用你的自行车测量学校到家里的实际距离。
这一问题的设计既考虑与学生生活的真实情景相结合,又能引起学生的猜测、估计、操作、观察、思考等具体的学习活动,并能使学生在具体的学习活动中学会搜集资料、分析问题。在解决实际问题中,学生需要搜集大量的信息,并从信息中剔除无用信息,留下有用信息,构建起数学模型,并运用数学模型进行计算、解决问题。在这一过程中,学生易于形成实事求是的态度以及进行质疑和独立思考的习惯,激发学生的创新精神。因此,我们在教学过程中,应注重学生建模思想的形成与运用。
综上所述,小学数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。

⑻ 如何通过数学建模和数学探究改善对学生的评价,突出评价的过程性和激励作用。

学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式.这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程.要使这个课程基本理念真正落实到高中数学教学中,教师应根据学生的认知水平和已有的知识经验设立体现数学某些重要应用的课程,开展“数学探究”“数学建模”的学习活动,力求使学生体验数学在解决实际问题中的作用,数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力,体验数学的真谛.

20世纪下半叶以来,数学应用的巨大发展是数学发展的显着特征之一.当今知识经济时代,数学正从幕后走向台前,数学和计算机技术的结合使得数学能够在许多方面直接为社会创造价值,同时,也为数学发展开拓了广阔的前景.我国的数学教育在很长一段时间内对于数学与实际、数学与其他学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强.近几年来,我国大学 、中学数学建模的实践表明,开展数学应用的教学活动符合社会需要,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野.在这样的课程理念下,人民教育出版社课程标准B版教材给我们吹来了一股春风,它不仅仅是简单的文字变化,而是教学思想理念的突出体现.整套教材设立了大量的“数学探究”“数学建模”等学习活动,提供了基本内容的实际背景,反映了数学的应用价值.这些体现数学应用的课程为学生形成积极主动的、多样的学习方式进一步创造了有利条件,同时也激发学生的数学学习兴趣、鼓励学生在学习过程中,养成独立思考、积极探索的习惯.

下面笔者就对“函数(第一课时)”内容进行了如下教学设计和尝试.

教材分析

1.本课的地位和作用

函数是数学中重要的基础概念之一。学生进一步学习的高等数学基础课程,包括极限理论、微分学、积分学、微分方程和泛函分析等,无一不是以函数作为基本概念和研究对象的。其他学科,如物理学科等,也是以函数的基础知识作为研究问题和解决问题的工具。它是在初中初步探讨函数的概念,函数关系的表示方法、图象的位置等基础上,对函数概念的再认识,即用集合的思想理解函数的一般定义。函数及应用研究的深入及提高,也是今后进一步参加工农业生产建设需要具备的基础知识.本章的学习对中学生数学学习起着决定性的作用.而且不仅是知识性方面,更重要的是在数学建模方面,也将是终身受益的一章.

2.教学重点与难点

重点:体会函数是描述两个变量之间的依赖关系的重要数学模型,在映射的基础上理解函数的概念.

难点:对函数符号y=f(x)的理解.

教学目标

1.知识与技能目标:

(1)通过不同的生活实例帮助学生建立数学概念的背景,从而正确理解函数的概念.

(2)能用集合与对应的语言来刻画函数,了解构成函数的要素,即定义域和对应法则;进一步理解对应法则的意义.

2.过程与方法目标:

了解函数是描述变量之间依赖关系的重要数学模型。在此基础上学习用集合与对应的语言来刻画函数,再现函数知识产生的过程。在数学建模中体验用数学思想、方法和知识解决实际问题的过程。

3.情感态度与价值观目标:

通过创设实际生活情景,让学生接近现实生活,关注社会实际;感受对应关系在刻画函数的概念中的作用,激发学生学习数学的兴趣,陶冶学生的情操,培养学生勇于探索的科学精神.

教学过程

一、创设问题情境

师:在初中我们已经学习过函数的概念,并且知道可以用函数描述两个变量之间的依赖关系,今天我们将进一步学习函数及其构成要素.下面我们一起看几个实例:

问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距地面的高度h(m)随时间t(s)的变化的规律是h=130t-5t2.提出以下问题:

(1) 炮弹飞行1s、10s、20s时距地面多高?

(2) 炮弹何时距离地面最高?

(3) 你能指出变量t和h的取值范围吗?分别用集合A和集合B表示出来.

(4) 对于集合A中的任意一个时间t,按照对应关系h=130t-5t2,在集合B中是否都有唯一的高度h和它对应?

生:因为有初中的基础,很快说出前三个小问题的答案,问题(4)师启发学生用集合与对应的语言描述变量之间的依赖关系:在t的变化范围内,任给一个t,按照给定的解析式,都有唯一的一个高度h与之对应.

[从多媒体展示的生活问题入手,再现初中变量观点描述函数的概念,为后面用集合和对应的观点来定义函数奠定基础。]

问题2.某市气象观测站测试一天24小时内的气温变化如图所示

(1) 上午8时的气温约是多少?

(2) 你能指出变量t和θ的取值范围吗?分别用集合A和集合B表示出来.

(3) 对于集合A中的每一个时刻t,按照图像所示,在集合B中是否都有唯一确定的温度θ和它对应?

生1答:上午8时的气温约是0。C;t的取值范围是[0,24];

θ的取值范围是[-2,9]。

生2答:对于集合A中的每一个时刻t,按照图象所示,在集合B中都有唯一确定的温度θ和它对应。

接着师请学生回顾近十年来自己家庭生活的变化,其中哪些方面的消费变化大?哪些方面的消费变化小?

[学生回答踊跃,进一步调动了学生的积极性,并亲身经历将实际问题抽象成数学模型的过程,这实际是倡导做数学和用数学,关注学生知识的形成发展的过程.]

师又抛出问题3.你认为该用什么数据来衡量家庭生活质量的高低?幻灯展示恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显着变化.

t
91
92
93
94
95
96
97
98
99
00
01

r
53.8
52.9
50.1
49.9
49.9
48.6
46.5
44.5
41.9
39.2
37.9

阅读图表后仿照问题1、问题2、描述表中恩格尔系数r和时间t(年份)的关系.

生归纳:对于表中的任一个时间t(年份),按照表格,都有唯一的一个恩格尔系数r与之对应.

二、探索新知

生分组讨论以上实例的共同特点,归纳总结出:都涉及到两个非空数集A、B,都存在某种对应关系,使对于A中的每一个数x,按照这种对应关系,在B中都有唯一的y与x对应.

[实际问题引出概念,激发学生兴趣,给学生思考、探索的空间,让学生体验数学发现和创造的历程,提高分析和解决问题的能力。]

1.函数的定义

设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x.在集合B中都有唯一确定的数值y和它对应,则这种对应关系叫做集合A上的一个函数。记作,其中.定义域:x的取值范围(数集A)叫做函数的定义域;如果自变量取值a,则法则f确定的值y称为函数在a处的函数值。值域:函数值的集合{y/y=,}叫做函数的值域.

师生共同回忆在初中介绍的函数概念,它是这样表述的:

设在一个变化过程中有两个变量与,如果对于的每一个值,都有惟一的值与它对应,那么就说是自变量,是的函数.

[我们看到,这里是用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的.]

师:函数的对应法则通常用记号表示,函数记号表明,对于定义域中的任意,在“对应法则”作用下得到.在比较简单的情况下,对应法则可用一个解析式来表示,但在不少问题中,对应法则要用几个解析式来表示,有时甚至不可能用解析式来表示,那用什么表示呢?

生:要用其他方式(如列表、图象)来表示.

学生分组讨论,函数定义需要注意的几个方面:(师板书)

(1),方向性;

(2)关键词“任意一个x”“唯一确定的数f(x)”.

(3)A,B为非空数集;

(4)A中的任一个元素,B中都有惟一的元素与之对应;而B中的元素在A中的对应元素可以不惟一,也可以没有,显然值域.

[教师在讲解概念时,在多媒体屏幕上有意识地用不同颜色的字体,突出强调重点,调动学生的非智力因素理解概念。]

2. 问题4:

(1)下列对应发则是否是在给定集合上的一个函数?

①R,g:自变量的倒数;

②R,h:自变量的平方根;

③R,s:自变量t的平方减2。

(2)下面一组函数,是否为相同的函数?

①f(x)=x2,x∈R;

②s(t)=t2,t∈R;

③g(x-2)=(x-2) 2,x∈R .

生:确定一个函数的两要素:定义域和对应法则.

师生互动研讨得出:函数用符号表示,在初中学习函数时未出现这个符号,应说明几点:

①,是表示是的函数,不是表示等于与的乘积;

② 不一定是一个解析式;

③ 与 是不同的.

3、例题教学:

师出示例1 ,某西瓜摊卖西瓜,6斤以下每斤4角,6斤以上每斤6角.请表示出西瓜重量x与售价y的函数关系.

生解:用解析法,这个函数的解析表示应分两种情况:

当时,;当时,.

师:这种函数叫分段函数,我们还可以用图象法来表示.请一位学生画出这个函数的图象.

师:请问这个函数关系是否能用列表法表示呢?不方便.因为西瓜重量的等级太多,列表不易列全.

三、巩固练习1:下列图形中可以作为函数图象的是( )

练习2:下列函数中哪个与函数是同一函数?

四、课堂小结

这节课的研究学习就到这里了,请大家回顾一下这节课的探索和收获.

生1、我们知道了函数定义:设A,B都是非空的数集,那么A到B的映射就叫做A到B的
函数,记作,其中,.

生2、我们知道了函数有三种表示方法:解析法,列表法,图象法.

生3、我们知道了函数的三要素:定义域;值域;

中的为对应法则.定义域为函数的基础,对应法则为函数的核心.

生4、本节课我们讨论、合作、交流等小组活动,亲身经历了将实际问题抽象成数学模型并进行解释与应用的过程,觉得我们身边处处有数学.

师:说得好!这些正是我们这一节课的重心所在,希望以后能看到你们独立思考探索的成果,展示你们的研究风采.

五、建模作业

①某种钉子,每只1角5分,买只钉子的钱数是元,请列出与的函数关系式,并画出函数的图象.

②邮寄包裹,每千克重的包裹收邮资费2元,邮程超过100km以后,每增加1km加收2角,求邮资与包裹所走的千米数的函数关系.

③请同学记录一周的天气预报,列出日最高气温与日期的函数关系.

教学评析

一、注重函数概念形成过程,感悟数学真谛

我们都知道数学概念都是从客观世界中直接或间接抽象出来的,其定义大多采用“问题情景—抽取本质属性—推广到一般”的方法给出.本节课函数的概念就是在教师的引导下,学生以探索者的姿态出现,参与了概念的形成规律的揭示过程,使其思维亲身经历了一个由具体到抽象、概括事物本质的认知过程,领悟知识形成过程中隐藏的思想方法,则学生获得的不仅是函数概念,更重要的是拓宽了思维空间感悟了数学的真谛,在掌握概念的同时其概括能力得到训练.

二、问题设计开放新颖,渗透数学思想方法

我们都知道学生原有的知识和经验是学习的基础,学生的学习都是在原有的知识经验基础上自我生成的过程.在学习函数概念前,学生在初中已经接触函数,教学中教师善于运用类比思想,抓住初中与高中两个函数概念的优劣,使学生体会知识之间的有机联系,感受数学的整体性。在学生合作交流的基础上,学生归纳出函数定义的几个注意方面,渗透了转化思想与归纳方法.

三、挖掘教材资源,拓展学生探究空间

我们都知道数学教材是数学课程标准的体现,是数学学科知识体系的精选,师生使用起来非常方便.本节课教师在教学中没有只停留在课本表面,而是认真钻研和熟悉教材,针对教材中的知识点,充分利用各种教学资源,组织学生探究,以培养学生的探究能力.这种精心设计的探究活动,能激发学生学习数学的积极性,提高学生探索问题、研究问题的能力.

四、改善教与学的方式,使学生主动地学习

丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念。学生的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式。本节教学中,既有教师的讲授和指导,也有学生的自主探索与合作交流,整节课教师都关注了学生的主体参与,给学生留有适当的拓展、延伸的空间和时间,激发学生对数学学习的兴趣,养成良好的学习习惯.

五、注重数学建模活动,发展学生应用意识

着名数学教育家弗赖登塔尔在谈到数学应用时,曾指出“应从两个方面来理解数学应用:既要重视从实际问题中提取数学概念和原理,又要重视用数学概念与原理反过来处理实际问题”;“而要将学校数学更为广泛地应用到不同的脉络背景,数学化应该是数学教学的主要方式”。本节课教师通过数学建模活动引导学生从实际情境中发现问题,并归结为数学模型,形成数学问题(即实际问题数学化)。同时开阔了学生的视野,体会了数学的科学价值、应用价值、人文价值.

阅读全文

与数学模型如何体现科学探究的相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:704
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1317
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1022
大学物理实验干什么用的到 浏览:1448
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:829
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1606
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017