❶ 数学中的公式等具有什么的特性
数学中的公式等具有高度抽象性、严密逻辑性、广泛应用性昌让庆的特性。
高度抽象性:数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来并借助于抽象发展的。
严密逻辑性:数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。
广泛应用性:数学作为一种工具耐握或手段,几乎在任何一门科学技术及一切社会领域中都被运用。各门科学的“数学化”,是现代科学发展的一大趋势。
数学中的公式:
周长:
长方形的周长 = (长+宽)×2 = 2(a+b)滑漏 = (a+b)×2
正方形的周长 = 边长×4 = 4a
圆的周长 = 圆周率×直径 = π d = 圆周率×半径×2 = 2 π r
面积:
长方形的面积 = 长×宽 S = ab
正方形的面积 = 边长×边长 S = a²
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
❷ 数学的主要特征有哪些
数学是研究数量、结构、变化以及空间模型等概念的一门学科.透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生.数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理.
❸ 理解并解释数学知识有什么特点
数学学科特点:高度的抽象性、结论的确定性和应用的广泛性是数学的特点.要想学好数学必须具备三大能力,即运算能力、空间想象能力及逻辑思维能力,其中逻辑思维能力是核心。运算能力是基础,空间想象能力主要用于立几题中,逻辑思维能力包括,判断能力、逻辑推理能力、数学建模能力以及对数学解的分析能力,
同时学习好数学要抓住“四个三”:
1.内容上要充分领悟三个方面:理论、方法、思维;
2.解题上要抓好三个字:数、式、形;3.阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言);4.学习中要驾驭好三条线:知识(结构)是明线(要清晰),方法(能力)是暗线(要领悟、要提练),思维(训练)是主线(思维能力是数学诸能力的核心,创造性的思维能力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。)
方法;一、掌握基础知识。把课本上的知识点全部弄懂弄熟,把课本上的例题,练习题也要研究透彻。二、能够,灵活运用。对于公式、定理、推论要理解透彻,在解题时分析题意,联系相关知识点,运用到解题步骤中。三、举一反三,勿搞题海战。做题不要求多,而要精,只要掌握一种类型的一道题,那么这种类型的其它题就可迎刃而解,万变不离其宗。四、考前复习要有侧重点。I,分值大的主要有函数,圆椎曲线,概率排列组合。分值小的有数列,三角函数,不等式,集合。
数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。
数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。
什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所着的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。
数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。
至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性。
❹ 数学学科有什么特点
1.明确的表述概察袜念
2.抽象
3.理想化
4.有推理方友敬法
5.有独特的符号体系
6.数学的二好没慎元性:归纳+推理=创造
❺ 1、数学有哪些特点
数学(mathematics、maths)是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。 数学透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察而产生。数学已成为许多国家及地区的教育范畴中的一部分。它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。数学家也研究纯数学,就是数学本身的实质性内容,而不以任何实际应用为目标。
❻ 数学三大特性
1.高度抽象性 :数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来 并借助于抽象发展的。
2.严密逻辑性 :数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。
3.广泛应用性:数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.
❼ 简述数学知识的特点
数学知识的特点
1.数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系”的认识,又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的能动创造。
2.从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显着的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,着名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。
3.对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。
4.事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。”
5.另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,……,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,…,另一方面,如果所考虑的领域存在于数学之外,…,数学就起着用科学的作用…·,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动…·,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验…·,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.”
从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。
6.基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后是它的应用的极端广泛、性,”“5”王粹坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重要性。
综上所述,对数学本质特征的认识是发展的。变化的,用历史的、发展的观点来看待数学的本质特征,恩格斯的“纯数学的对象是现实世界的空间形式和数量关系”的论断并不过时,对初等数学来说就更是如此,当然,对“空间形式和数量关系”的内涵,我们应当作适当的拓展和深化。顺便指出,对数学本质特征的讨论中,采取现象与本质并重、过程与结果并重、形式与内容并重的观点:,对数学教学具有重要的指导意义。
关于数学所具有的特点,可以把数学和其他学科相比较,这种特点就十分明显了。
同其他学科相比,数学是比较抽象的。数学的抽象性表现在哪里呢?那就是暂时撇开事物的具体内容,仅仅从抽象的数方面去进行研究。比如在简单的计算中,2+3既可以理解成两棵树加三棵树,也可以理解成两部机床加三台机床。在数学里,我们撇开树、机床的具体内容,而只是研究2+3的运算规律,掌握了这个规律,那就不论是树、机床,还是汽车或者别的什么事物都可以按加法的运算规律进行计算。乘法、除法等运算也都是研究抽象的数,而撇开了具体的内容。
数学中的许多概念都是从现实世界抽象出来的。比如几何学中的“直线”这一概念,并不是指现实世界中的拉紧的线,而是把现实的线的质量、弹性、粗细等性质都撇开了,只留下了“向两方无限伸长”这一属性,但是现实世界中是没有向两方无限伸长的线的。几何图形的概念、函数概念都是比较抽象的。但是,抽象并不是数学独有的属性,它是任何一门科学乃至全部人类思维都具有的特性。只是数学的抽象性有它不同于其他学科抽象的特征罢了。
数学的抽象性具有下列三个特征:第一,它保留了数量关系或者空间形式。第二,数学的抽象是经过一系列的阶段形成的,它达到的抽象程度大大超过了自然科学中的一般抽象。从最原始的概念一直到像函数、复数、微分、积分、泛函、n维甚至无限维空间等抽象的概念都是从简单到复杂、从具体到抽象这样不断深化的过程。当然,形式是抽象的,但是内容却是非常现实的。正如列宁所说的那样:“一切科学的(正确的、郑重的、不是荒唐的)抽象,都更深刻、更正确、更完全地反映着自然。”(《黑格尔〈逻辑学〉一书摘要》,《列宁全集》第38卷第181页)第三,不仅数学的概念是抽象的,而数学方法本身也是抽象的。物理或化学家为了证明自己的理论,总是通过实验的方法;而数学家证明一个定理却不能用实验的方法,必须用推理和计算。比如虽然我们千百次地精确测量等腰三角形的两底角都是相等的,但是还不能说已经证明了等腰三角形的底角相等,而必须用逻辑推理的方法严格地给予证明。在数学里证明一个定理,必须利用已经学过或者已经证过的概念、定理用推理的方法导出这个新定理来。我们都知道数学归纳法,它就是一种比较抽象的数学证明方法。它的原理是把研究的元素排成一个序列,某种性质对于这个序列的首项是成立的,假设当第k项成立,如果能证明第k+1项也能成立,那么这一性质对这序列的任何一项都是成立的,即使这一序列是无穷序列。
数学的第二个特点是准确性,或者说逻辑的严密性,结论的确定性。
数学的推理和它的结论是无可争辩、毋容置疑的。数学证明的精确性、确定性从中学课本中就充分显示出来了。
欧几里得的几何经典着作《几何原本》可以作为逻辑的严密性的一个很好的例子。它从少数定义、公理出发,利用逻辑推理的方法,推演出整个几何体系,把丰富而零散的几何材料整理成了系统严明的整体,成为人类历史上的科学杰作之一,一直被后世推崇。两千多年来,所有初等几何教科书以及19世纪以前一切有关初等几何的论着都以《几何原本》作为根据。“欧几里得”成为几何学的代名词,人们并且把这种体系的几何学叫做欧几里得几何学。
但是数学的严密性不是绝对的,数学的原则也不是一成不变的,它也在发展着。比如,前面已经讲过《几何原本》也有不完美的地方,某些概念定义得不明确,采用了本身应该定义的概念,基本命题中还缺乏严密的逻辑根据。因此,后来又逐步建立了更严密的希尔伯特公理体系。
第三个特点是应用的广泛性。
我们几乎每时每刻都要在生产和日常生活中用到数学,丈量土地、计算产量、制订计划、设计建筑都离不开数学。没有数学,现代科学技术的进步也是不可能的,从简单的技术革新到复杂的人造卫星的发射都离不开数学。
而且,几乎所有的精密科学、力学、天文学、物理学甚至化学通常都是以一些数学公式来表达自己的定律的,并且在发展自己的理论的时候,广泛地应用数学这一工具。当然,力学、天文学和物理学对数学的需要也促进了数学本身的发展,比如力学的研究就促使了微积分的建立和发展。
数学的抽象性往往和应用的广泛性紧密相连,某一个数量关系,往往代表一切具有这样数量关系的实际问题。比如,一个力学系统的振动和一个电路的振荡等用同一个微分方程来描述。撇开具体的物理现象中的意义来研究这一公式,所得的结果又可用于类似的物理现象中,这样,我们掌握了一种方法就能解决许多类似的问题。对于不同性质的现象具有相同的数学形式,就是相同的数量关系,是反映了物质世界的统一性,因为量的关系不只是存在于某一种特定的物质形态或者它的特定的运动形式中,而是普遍存在于各种物质形态和各种运动形式中,所以数学的应用是很广泛的。
正因为数学来自现实世界,正确地反映了客观世界联系形式的一部分,所以它才能被应用,才能指导实践,才表现出数学的预见性。比如,在火箭、导弹发射之前,可以通过精密的计算,预测它的飞行轨道和着陆地点;在天体中的未知行星未被直接观察到以前,就从天文计算上预测它的存在。同样的道理也才使得数学成为工程技术中的重要工具。
下面举几个应用数学的光辉例子。
第一,海王星的发现。太阳系中的行星之一的海王星是在1846年在数学计算的基础上发现的。1781年发现了天王星以后,观察它的运行轨道总是和预测的结果有相当程度的差异,是万有引力定律不正确呢,还是有其他的原因?有人怀疑在它周围有另一颗行星存在,影响了它的运行轨道。1844年英国的亚当斯(1819—1892)利用引力定律和对天王星的观察资料,推算这颗未知行星的轨道,花了很长的时间计算出这颗未知行星的位置,以及它出现在天空中的方位。亚当斯于1845年9~10月把结果分别寄给了剑桥大学天文台台长查理士和英国格林尼治天文台台长艾里,但是查理士和艾里迷信权威,把它束之高阁,不予理睬。
1845年,法国一个年轻的天文学家、数学家勒维烈(1811—1877)经过一年多的计算,于1846年9月写了一封信给德国柏林天文台助理员加勒(1812—1910),信中说:“请你把望远镜对准黄道上的宝瓶星座,就是经度326°的地方,那时你将在那个地方1°之内,见到一颗九等亮度的星。”加勒按勒维烈所指出的方位进行观察,果然在离所指出的位置相差不到1°的地方找到了一颗在星图上没有的星——海王星。海王星的发现不仅是力学和天文学特别是哥白尼日尔爾心学说的伟大胜利,而且也是数学计算的伟大胜利。
第二,谷神星的发现。1801年元旦,意大利天文学家皮亚齐(1746—1826)发现了一颗新的小行星——谷神星。不过它很快又躲藏起来,皮亚齐只记下了这颗小行星是沿着9°的弧运动的,对于它的整个轨道,皮亚齐和其他天文学家都没有办法求得。德国的24岁的高斯根据观察的结果进行了计算,求得了这颗小行星的轨道。天文学家们在这一年的12月7日在高斯预先指出的方位又重新发现了谷神星。
第三,电磁波的发现。英国物理学家麦克斯韦(1831—1879)概括了由实验建立起来的电磁现象,呈现为二阶微分方程的形式。他用纯数学的观点,从这些方程推导出存在着电磁波,这种波以光速传播着。根据这一点,他提出了光的电磁理论,这理论后来被全面发展和论证了。麦克斯韦的结论还推动了人们去寻找纯电起源的电磁波,比如由振动放电所发射的电磁波。这样的电磁波后来果然被德国物理学家赫兹(1857—1894)发现了。这就是现代无线电技术的起源。
第四,1930年,英国理论物理学家狄拉克(1902—1984)利用数学演绎法和计算预言了正电子的存在。1932年,美国物理学家安德逊在宇宙射线实验中发现了正电子。类似的例子不胜枚举。总之,在天体力学中,在声学中,在流体力学中,在材料力学中,在光学中,在电磁学中,在工程科学中,数学都作出了异常准确的预言。
❽ 小学数学学科特点有哪些
1、小学数学是一种符号化的数学知识与生活实际经验相结合的学习过程。
2、小学数学是一种不断提出问题、探索问题、解决问题的过程。
3、小学数学是获取数学知识、形成数学技能和能力的一种思维活动。通过数学学习培养学生的思维能力,尤其培养创新意识是不言而喻的。
4、小学数学是有指导的“再创造”的过程,着名的荷兰数学教育家弗赖登塔尔指出:用自己的思维方式重新构造知识就是再创造。
❾ 现代数学的三大显着特征
在《基本概念与运算法则》这本书中指出,现代数学的三大显着特征是符号化、公理化和形式化。如何理解这三个特征在现在数学中的地位,还得回到这三个特征为什么存在来思考。
符号化:大家都知道数学是抽象的,是研究从现实生活中抽象出来的数及数之间的关系,因此数学研究得到的模型必须具有普适性,是高度抽象和概括的,不能说适用于现实中关于鸡的问题,却不适用于鸭的问题。为了达到这样的目标,如果在研究数之间的关系时,需要比数量带上那就非常麻烦。比如我们常说一只青蛙一张嘴,两只眼睛四条腿,按这样的说法说一辈子也说不完,但数学的符号化很好的解决了这个问题,现在我们都知道a只青蛙a张嘴,2a只眼睛,4a条腿,而且这里的a、2a和4a的关系不因现实是青蛙还是兔子而发生改变。这只是一个比较简单的例子,因为这样的关系只能用于4条腿的动物,而我们都熟知的运算律却是完全使用与现实生活的,比如a+b=b+a,所以数学的符号化为更好的研究数之间的关系提供了可能,也为后面两个特征奠定了基础。
公理化:其实可以理解为大家学习的数学证明题,你会发现在证明某个命题时我们需要从正确的命题a得到正确的命题b,最后经茄仔碰历若干次这样的过程得到命题是否正确。在这个过程中你是否考虑过,每一个命题之所以正确都是由于它有一个前提,这个前提推出了它的正确,比如上面提到的命题b,为什么命题b是正确的?这是因为正确的命题a推出了命题b是正确的。那现在我们想一想命题a又为什么是正确的呢?哪个命题能证明呢?这样逐一倒退,最终我们会发现这是没有终点的,但如果没有终点我们就无法证明某个命题是否正确,而且也并不是所有的命题我们都能个找到前提来证明的,比如如果a=b且b=c,那么a=c,这个命颤谈题是没有办法找到前提来证明的。鉴于此,戚扮着名的数学家欧几里得提出了五个公理:1、等于同量的量彼此相等。2、等量加等量,其和相等。3、等量减等量,其差相等。4、彼此能重合的物体是全等的。5、整体大于部分。正是因为有了这5条公理,我们才能够由他们出发,得到更多的关系,也因此建立了数学的公理化体系。
形式化:这里的形式化指的是论证方法的形式化,之前我们说到了数学的公理化,即我们可以通过证明的方法得到某些命题是否正确,但是这个证明的过程应该是怎样的,怎样写才能保证逻辑严密,同时又不冗余,因此亚里士多德提出了着名的“三段论”,即以一个一般性的原则(大前提)以及一个附属于一般性的原则的特殊化陈述(小前提),由此引申出一个符合一般性原则的特殊化陈述(结论)的过程。比如动物都有思想(大前提),人是动物(小前提),所以人有思想(结论)。这个过程现在看来好像是很正常的,但这一伟大的发明为人类思维方法的确立以及思维能力的提高奠定了坚实的基础。
❿ 数学这门学科的特点是什么
数学学科的特点
数学是一门研究数量关系和空间形式的科学,具有严密的符号体系,独特的公式结构,形象的图像语言。它有三个显着的特点:高度抽象,逻辑严密,广泛应用。
1.高度抽象性 .
数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来 并借助于抽象发展的。
数学的抽象撇开了对象的具体内容,而仅仅保留数量关系和空间形式。在数学家看来,五个石头、五座大山、五朵金花与五条毒蛇之间,并没有什么区别。数学家关心的只是“五”。
又如几何中的“点”、“线”、“面”的概念,代数中的“集合”、“方程”、“函数”等概念都是抽象思维的产物。“点”被看作没有大小的东西,禾长无宽无高;“线”被看作无限延长而无宽无高,“面”则被认为是可无限伸展的无高的面。实际上,理论上的“点”、“线”、“面”在现实中是不存在的,只有充分发挥自己的空间想象力才能真正理解。
2.严密逻辑性 .
数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。任何一门科学,都要应用逻辑工具,都有它严谨的一面。但数学对逻辑的要求不同于其它科学 因为数学的研究对象是具有高度抽象性的数量关系和空间形式,是一种形式化的思想材料。许多数学结果,很难找到具有直观意义的现实原型,往往是在理想情况下进行研究的。如一元二次方程求根公式的得出,两条直线位置关系的确定,无穷小量的得出,等等。数学运算、数学推理、数学证明、数学理论的正确性等,不能像自然科学那样借助于可重复的实验来检验,而只能借助于严密的逻辑方法来实现。
3.广泛应用性 . 数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。各门科学的“数学化”,是现代科学发展的一大趋势。我国已故着名数学家华罗庚教授曾指出:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学”。 这是对数学应用的广泛性的精辟概括。
数学应用的例证不胜枚举,太阳系九大行星之一的海王星的发现,电磁波的发现,都是 历史上数学应用的光辉范例。
数学的这三个显着特点是互相联系的,数学的高度抽象性,决定了其逻辑的严密性,同时又保证其广泛的应用性。这些特点也深刻地反映了:实践是数学的源泉,实践应用的需要正是学习数学的目的。