Ⅰ 小学数学口算训练技巧有哪些
一、基础性训练
从小学生不同的年龄心理特点上看,口算的基础要求不同。低中年级主要在一二位数的加法。高年级把一 位数乘两位数的口算作为基础训练效果较好。具体口算要求是,先将一位数与两位数的十位上的数相乘,得到 的三位数立即加上一位数与两位数的个位上的数相乘的积,迅速说出结果。这项口算训练,有数的空间概念的 练习,也有数位的比较,又有记忆训练,在小学阶段可以说是一项数的抽象思维的升华训练,对于促进思维及 智力的发展是很有益的。这项练习可以安排在两段的时间里进行。一是早读课,一是在家庭作业的最后安排一 组。每组是这样划分的:一位数任选一个,对应两位数中个位或十位都含有某一个数的。每组有18道,让学生 先写出算式,口算几遍后再直接写出得数。这样持续一段时间后(一般为2~3个月),其口算的速度、正确率 也就大大提高了。
二、针对性训练
小学高年级数的主体形式已从整数转到了分数。在数的运算中,异分母分数加法是学生费时多又最容易出 差错的地方,也是教与学的重点与难点。这个重点和难点如何攻破呢?经研究比较和教学实践证明,把分数运 算的口算有针对地放在异分母分数加法上是正确的。通过分析归纳,异分母分数加(减)法只有三种情况,每 种情况中都有它的口算规律,学生只要掌握了,问题就迎刃而解了。
1.两个分数,分母中大数是小数倍数的。
如“1/12+1/3”,这种情况,口算相对容易些,方法是:大的分母就是两个分母的公分母,只要把小的分 母扩大倍数,直到与大数相同为止,分母扩大几倍,分子也扩大相同的倍数,即可按同分母分数相加进行口算:1/12+1/3=1/12+4/12=5/12
2.两个分数,分母是互质数的。这种情况从形式上看较难,学生也是最感头痛的,但完全可以化难为易: 它通分后公分母就是两个分母的积,分子是每个分数的分子与另一个分母的积的和(如果是减法就是这两个积的差),如2/7+3/13,口算过程是:公分母是7×13=91,分子是26(2×13)+21(7×3)=47,结果是47/91。
如果两个分数的分子都是1,则口算更快。如“1/7+1/9”,公分母是两个分母的积(63),分子是两个分母 的和(16)。
3.两个分数,两个分母既不是互质数,大数又不是小数的倍数的情况。这种情况通常用短除法来求得公分 母,其实也可以在式子中直接口算通分,迅速得出结果。可用分母中大数扩大倍数的方法来求得公分母。具体 方法是:把大的分母(大数)一倍一倍地扩大,直到是另一个分母小数的倍数为止。如1/8+3/10把大数10,2 倍、3倍、4倍地扩大,每扩大一次就与小数8比较一下,看是否是8的倍数了,当扩大到4倍是40时,是8的倍数 (5倍),则公分母是40,分子就分别扩大相应的倍数后再相加(5+12=17),得数为17/40。
以上三种情况在带分数加减法中口算方法同样适用。
三、记忆性训练
高年级计算内容具有广泛性、全面性、综合性。一些常见的运算在现实生活中也经常遇到,这些运算有的 无特定的口算规律,必须通过强化记忆训练来解决。主要内容有:
1.在自然数中10~24每个数的平方结果;
2.圆周率近似值3.14与一位数的积及与12、15、16、25几个常见数的积;
3.分母是2、4、5、8、10、16、20、25的最简分数的小数值,也就是这些分数与小数的互化。
以上这些数的结果不管是平时作业,还是现实生活,使用的频率很高,熟练掌握、牢记后,就能转化为能 力,在计算时产生高的效率。
四、规律性的训练
1.运算定律的熟练掌握。这方面的内容主要有“五大定律”:加法的交换律、结合律;乘法的交换律、结 合律、分配律。其中乘法分配律用途广形式多,有正用与反用两方面内容,有整数、小数、分数的形式出现。 在带分数与整数相乘时,学生往往忽略了乘法分配律的应用使计算复杂化。如2000/16×8,用了乘法分配律可 以直接口算出结果是1001.5,用化假分数的一般方法计算则耗时多且容易错。此外还有减法运算性质和商不变 性质的运用等。
2.规律性训练。主要是个位上的数是5的两位数的平方结果的口算方法(方法略)。
3.掌握一些特例。如较常遇见的在分数减法中,通分后分子部分不够减,往往减数的分子比被减数的分子 大1、2、3等较小的数时,不管分母有多大,均可以直接口算。如12/7-6/7它的分子只相差1,它差的分子一定 比分母少1,结果不用计算是6/7。又如:194/99-97/99,分子部分相差2,它差的分子就比分母少2,结果就是 97/99。减数的分子比被减数的分子大3、4、5等较小的数时,都可以迅速口算出结果。又如任意两位数与1.5积 的口算,就是两位数再加上它的一半。
五、综合性训练
1.以上几种情况的综合出现;
2.整数、小数、分数的综合出现;
3.四则混合的运算顺序综合训练。
综合性训练有利于判断能力、反应速度的提高和口算方法的巩固。
当然,以上这些情况,要使学生熟练掌握,老师首先要娴熟运用自如,指导时才能得心应手,提高效果。 同时训练应持之以恒,三天打渔两天晒网,是难以收到预期效果的。
Ⅱ 口算的三种方法
口算的三种方法如下:
一、十几乘十几:
1、口诀:头乘头,尾加尾,尾乘尾。
2、例:13×15=?解:1×1=1,3+5=8,3×5=15,13×15=195。
3、注:个位相乘,不够两位数要用0占位。
四、提高孩子口算能力的3个方法:
1、引导孩子理解并掌握口算技巧
口算技巧,其实就是一个数学计算的基本知识。比如凑十法、分解法、九九加减乘除口诀者键、数字大小、进位借位等,这些知识在大人看来似乎是小儿科的东西,但是对于孩子口算能力提升有重要作用。如果这些都不能熟练掌握,那么,孩子的口算水平就会比较差。
2、从孩子的兴趣入手,化被动学习为主动学习
要想孩子好学数学,建议从兴趣方面入手,化被动为主动,就像大家推崇的寓教于乐一样,这种学习方式,不仅能让孩子轻松学习,而且学习效率也更高。
3、有始有终,持之以恒
学习不是一蹴而就的事情,想要真正地提高自己的口算能力,并不是今天发愤图强,明天就能够登上成功的宝座。所以,在进行口算训练的时候,一定要注意让孩子有始有终,持之以脊嫌孝恒,每天都坚持训练。
Ⅲ 三年级数学快速口算方法
只要熟练掌握计算法则和运算顺序,根据题目本身的特点,使用合理、灵活的计算方法,化繁为简,化难为易,就能算得又快又准确。先为大家介绍5个速算技巧:
1. 方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例如:
23-11+7=23+7-11
4×14×5=4×5×14
10÷8×4=10×4÷8
2. 方法二:结合律法
加括号法
(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
例如:
23+19-9=23+(19-9)
33-6-4=33-(6+4)
(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
例如:
2×6÷3=2×(6÷3)
10÷2÷5=10÷(2×5)
去括号法
(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
例如:
17+(13-7)=17+13-7
23-(13-9)=23-13+9
23-(13+5)=23-13-5
(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)
例如:
1×(6÷2)=1×6÷2
24÷(3×2)=24÷3÷2
24÷(6÷3)=24÷6×3
3. 方法三:乘法分配律法
分配法
括号里是加或减运算,与另一个数相乘,注意分配。
例如:
8×(5+11)=8×5+8×11
提取公因式法
注意相同因数的提取。
例如:
9×8+9×2=9×(8+2)
4. 方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难嘛。
例如:
99+9=(100-1)+(10-1)
5. 方法五:拆分法
拆分法就是为了方便计算,把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例如:
32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
要想让孩子熟练运用速算方法,需要通过持之以恒的练习,提升计算能力,这样,无论平时做作业还是考试都能游刃有余。
建议家长每天抽出5分钟时间,帮助孩子进行口算练习,培养孩子快速、准确口算的能力。在练习过程中,也要记录好用时,做完后马上核对正误,并分析做错的原因。
Ⅳ 口算有什么快速方法呢
口算没有所谓的投机取巧的办法,最重要的还是得多练习。
1、每天没事的时候,多做做一些简单的计算题,给自己设置一个时间限制,在规定的时间内,计算出来这道题目,假以时日,肯定有所提升,远大小状元在线做一些口算的题目,可以设置时间,可以在闲暇之余做。
2、其次还是训练记忆力,记忆力的训练说简单,很简单,说难的时候,又很难!
简单在于方法,每天花点时间,把做错的题目收集起来,勤于反思,难又在于需要非常勤劳,每天定时定点地去做这件事,所以很难坚持。远大小状元有专门的错题本可以帮助孩子收集曾经做错的题目,帮助孩子解决问题,训练孩子的记忆力。
(4)数学口算有什么方法是什么扩展阅读:
培养学生的口算能力,念好“基(抓基本)、教(教方法)、练(常训练)”三字经是至关重要的。
1、直观表象助口算
从运算形式看,小学低年级的口算是从直观感知过渡到表象的运算。这样表象建立了,口算的准确性也就有基础了。
2、理清算理助口算
基本口算的教学,不在于单一的追求口算速度,而在于使学生理清算理,只有弄清了算理,才能有效地掌握口算的基本方法。因此,应重视抓好算理教学。
3、说理训练助口算
抓好说理训练,能使孩子有效地掌握基本口算,培养孩子思维的灵活性。
Ⅳ 口算心算的速算方法是什么
1、加大减差法:前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
2、减大加差法:被减数减去减数的整数,再加谨滚渗上减数与整数的差,等于差。
3、互补两个数的差:两位互补的数相减,被减数减50乘以2;三位互补的数相减,被减数减500乘以2;四位互补的数相减,被减数减5000乘以2,以此类推。
4、数字位置颠倒两个两位数的和:一个数的十位数加上它的个位数乘以11等于和。
(5)数学口算有什么方法是什么扩展阅读:
破十法即:当个位不够减时,就用10减去减数,剩下的数和个位上的数相加,即破十法。
破十法口诀
十几减九,几加一;十几减七,几加三;十几减祥脊五,几加五;十几减三,几加七;十几减八,几加二;十几减六,几加四;十几减备裂四,几加六;十几减二,几加八。
Ⅵ 数学口算简单的方法
一
用“凑十法”口算
根据式题的特征,应用定律和性质使运算数据“凑整”:
1、加数“凑整”。
如14+5+6=?启发学生:几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,把几个数相加。
2、运用减法性质“凑整”。
如50-13-7,启发学生说出思考过程,说出几种口算方法并通过比较,让学生总结出:从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。这种口算比较简便。
3.连乘中因数“凑整”。
如25×14×4,25与4的积是100,可直接口算出结果是140。
二
运用“分解法”口算
就是把题目中的某数“拆开”分别与另一个数运算,如25×32,原式变成25×4×8=10×8=80。
三
运用一些速算技巧进行口算
1.首同尾合10的两个两位数相乘的乘法速算。
即用其中一个十位上的数加1再乘以另一个数的十位数,所得积作两个数相乘积的百位、千位,再用两个数个位上数的积作两个数相乘的积的个位、十位。如:14×16=224(4×6=24作个位、十位、(1+1)×1=2作百位)。
2.头差1尾合10的两个两位数相乘的乘法速算。即用较大的因数的十位数的平方,减去它的个位数的平方。如:48×52=2500-4=2496。
3.采用“基准数”速算。
如623+595+602+600+588可选择600为基数,先把每个数与基准数的差累计起来,再加上基数与项数的积。
4.掌握一些运算规律。
例如,两个分母互质数且分子都为1的分数相减,可以把分母相乘的积作分母,把分母的差作分子;两个分母互质数且分子相同,可以把分母相乘的积作为分母,分母相减的差再乘以分子作分子,等等。
Ⅶ 怎么样才能简单口算
数学简单口算方法
这里为大家介绍几种简单的数学口算方法芦高,口诀很重要哦1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:13×15=? 解: 1×1=1 3+5=8 3×5=15 13×15=195注:个位相乘,不够两位数要用0占位 2.11乘任意数: 口诀:首尾不动下落,中间之和下拉。 例:11×23125=? 解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分别在首尾 11×23125=254375 注:和满十要进一。3.十几乘任意数: 口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。例:13×326=? 解:13个位是3 3×3+2=11 3×2+6=12 3×6=18 13×326=4238 注:和满十要进一。
数学简单口算方法 这里为大家介绍几种简单的数学口算方法,口诀很重要哦 1.十几乘十几: 口诀:头乘头,尾加尾,尾乘尾。 例:13×15=? 解: 1×1=1 3+5=8 3×5=15 13×15=195 注:个位相乘,不够两位数要用0占位 2.11乘任意数: 口诀:首尾不动下落,中间之和下拉。 例:11×23125=? 解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分别在首尾 11×23125=254375 注闷逗:和满十要进一。 3.十几乘任意数: 口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面陪罩尺每一个数字,加下一位数,再向下落。 例:13×326=? 解:13个位是3 3×3+2=11 3×2+6=12 3×6=18 13×326=4238 注:和满十要进一。
Ⅷ 小学口算方法及技巧
一,口算技巧:
1.加法类口算:凑整
这类计算不管两个加数多少一陪悉带定要先把一个加数凑成整,再将剩余的数加上去,保证结果的正确率
2.减法类口算:减整补差
这类计算时,将减数凑成整,运算后把补的部分加回来就是最后结果
3.乘法类口算:巧记口诀,留意零芦芦
例如:4x25、4x125、8x25、8x125等能够得到整结果的式子;而且乘法运算多是乘法口诀的变式,留意零
4.除法类口算:乘法逆运算
2.大声读题
①对于容易看错数字、符号的孩子,感知能力稍微差些,有个非常高效的锻炼感知能力的方式,那就是“大声读题”。
②朗读的时候需要更高的注意力,比默读的正确率要高很多,读算的训练多了,孩子的反应能力、计算速度等,都要快上许多,孩子因粗心而出现错误的概率自然减少。
3.大量的练习
①孩子注意力集中了、对口算感兴趣了,接下来,就是要提升熟练度。在提升熟练度这一块,家长需要先判断孩子“会不会算”,然后再让孩子“大量算”。
②会不会算低年级的口算,最基础的是需要掌握借十法、凑十法、口诀等方法,只有学会这些口算方法,才能提升口算的正确率以及效率。
Ⅸ 口算的技巧有哪些
口算是我们生活当中经常要运用到的一种数学方法,对于学生来说,主要是在小学阶段用得比较多。掌握一定的口算速算技巧,可以让数学学习更加有效,让孩子爱上学习数学。口算的速算技巧有很多,适合于不同的年龄阶段,比如凑整法就是根据式题的特征,应用定律和性质使运算数据“凑整”。
1、加法凑整
例:32+15+8
原式=32+8+15=40+15=55
几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,再把几个数相加。
2、减法凑整好缓
例友拦模:50-13-衡早7
原式=50-(13+7)=50-20=30
从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。
3、乘法凑整
例1:25×14×4
原式=25×4×14=100×14=1400
先熟记25×4=100,125×8=1000;碰到25、125这样大的乘数先看看是否可以凑出4、8。
例2:25×32
原式=25×4×8=10×8=80
在熟记上面式子的基础上,把题目中的某数“拆开”分别与另一个数运算。
2.巧用乘法分配律
巧用乘法分配律格式为:m(a+b)=ma+mb
例1: 33×99
原式=33×(100-1)=3300-33=3267
例2: 666×666
原式=333×2×222×3=999×444=(1000-1)×444=444000-444=443556
3.找基准数法
找基准数法就是先把每个数与基准数的差累计起来,再加上基数与项数的积。
例:623+595+602+600+588
可选择600为基数,原式=600×5+23-5+2-12=3008
4.熟记常用数据
熟记1到20各自然数的平方数,可以有效提高做计算题的速度。
Ⅹ 除法口算的方法和技巧
除法口算的方法和技巧:
口算除法的方法:除数是两位数的除法,先看被除数的前两位,如果前两位比除数小,就看被除数的前三位,除到被除数的哪一位,商就写在哪一位的上面,每次除得的余数一定比除数小。
除法是四则运算之一。已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c/b,读作c除以b(或b除c)。其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
整十、整百数除以一位数的口算方法:
1、利用数的组成口算。这种方法主要是将被除数看成几个十或几个百的形式,用这个数的去除以除数,商是几个十或几个百。
2、利用表内除法口算。这种方法主要是通过整十或整百数的最高位上的数字去除以除数,所得的商也在这个数位上,所以最后的商也是几十或几百。
3、利用表内乘法口算。这种方法主要是利用逆向思维的方式。通过除数的表内乘法的关系来匹配被除数对最高位或是前几位数字。这种计算方法在平时的计算当中非常常见,避免了在口算的过程当中出现多零或少零的情况。
总结:
在探索整时整百数除以一位数的除法时,我们采用均分的方式把被除数分成暂时或整百的相等份数。
通过这种方式推导出同学们比较常见的数位表达的方式并且把这种方法和规律应用到口算被除数是整十或整百的除法算式中。
这种方法是从除法的根本形式出发。只要了解除法的意义以及表现的形式。那么理解起来还是很方便的。