‘壹’ 二元一次方程组的解法
对于二元一次方程组的解法,我们用的方法是消元思想。也就是把两个未知数转换为一个未知数,这也是我们初中数学中重要的思想。代入消元法和加减消元法是二元一次方程组的两种基本解法,它们都是通过消元将方程组转化为一元一次方程,再求解.
代入消元法:
1. 把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.
2. 用代入法解二元一次方程组的一般步骤:
① 从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y,用另一个未知数如x的代数式表示出来,即写成y=mx+n的形式;
② 代入消元:把y=mx+n代入另一个方程中,消去y,得到一个关于x的一元一次方程;
③ 解这个一元一次方程,求出x的值;
④ 回代求解: 把求得的x的值代入y=mx+n中求出y的值,从而得出方程组的解.
⑤ 把这个方程组的解 写成{x=ay=b的形式.
‘贰’ 二元一次方程消元法
将二元一次方程组转化为一元一次方程,这样就可以先解出一个未知数,然后再设法求另一个未知数。这种将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
具体转化方法是运用“代入消元法”或“加减消元法”,达到把二元一次方程组中的二个未知数消去一个未知数,得到一元一次方程,从而实现消元,进而解决问题。下面举例说明:
一、利用代入法快速求值:
在二元一次方程组的一个方程中,把一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。
二、利用加减法快速求值
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
合理利用此思想,在求值题中同样可以收到事半功倍的效果。
例3. 若4x+5y=10,且5x+4y=8,则。
解:由题意得:
由 ① + ② 得:9x+9y=18 即:x + y= 2
由 ② - ①得:x - y=-2
所以 -1
点评:若直接把4x+5y=10和5x+4y=8组成方程组,求出方程组的解,再把解代入求值。这样运算量不仅大,而且容易出错。
如果认真分析所求值式,可考虑利用加减法很快求得x+y和x-y的值,于是此题迎刃二元一次方程组中的数学思想,主要是指数学的“消元”思想,即:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,这样就可以先解出一个未知数,然后再设法求另一个未知数。这种将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
具体转化方法是运用“代入消元法”或“加减消元法”,达到把二元一次方程组中的二个未知数消去一个未知数,得到一元一次方程,从而实现消元,进而解决问题。下面举例说明:
一、利用代入法快速求值:
在二元一次方程组的一个方程中,把一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
二、利用加减两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。