A. 群应该满足哪些定律(数学文化)
以加群G为例,应满足:
1)任a,b∈G,则a+b∈G;
2)任a,b,c∈G,则(a+b)+c=a+(b+c);
3)存在0,对任a∈G,都有a+0=0+a=a;
4)对任a∈G,存在-a,使得a+(-a)=(-a)+a=0.
B. 数学上的群、域、环等有什么区别和联系
1、群(group)是两个元素作二元运算得到的一个新元素,需要满足群公理(group axioms),即:
①封闭性:a ∗ b is another element in the set
②结合律:(a ∗ b) ∗ c = a ∗ (b ∗ c)
③单位元:a ∗ e = a and e ∗ a = a
④逆 元:加法的逆元为-a,乘法的逆元为倒数1/a,… (对于所有元素)
⑤如整数集合,二次元运算为加法就是一个群(封闭性是显然的,加法满足结合律,单位元为0,逆元取相反数-a)。
2、环(ring)在阿贝尔群(也叫交换群)的基础上,添加一种二元运算·(虽叫乘法,但不同于初等代数的乘法)。一个代数结构是环(R, +, ·),需要满足环公理(ring axioms),如(Z,+, ⋅)。环公理如下:
①(R, +)是交换群
封闭性:a + b is another element in the set
结合律:(a + b) + c = a + (b + c)
单位元:加法的单位元为0,a + 0 = a and 0 + a = a
逆 元:加法的逆元为-a,a + (−a) = (−a) + a = 0 (对于所有元素)
交换律:a + b = b + a
②(R, ·)是幺半群
结合律:(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
单位元:乘法的单位元为1,a ⋅ 1 = a and 1 ⋅ a = a
③乘法对加法满足分配律Multiplication distributes over addition
3、域(Field)在交换环的基础上,还增加了二元运算除法,要求元素(除零以外)可以作除法运算,即每个非零的元素都要有乘法逆元。
由此可见,域是一种可以进行加减乘除(除0以外)的代数结构,是数域与四则运算的推广。整数集合,不存在乘法逆元(1/3不是整数),所以整数集合不是域。有理数、实数、复数可以形成域,分别叫有理数域、实数域、复数域。
C. 请解释一下离散数学中各种群的定义以及之间的关系
存在群结构的集合,若其某个子集上也存在这种群结构,就叫子群,
半群:群要求对其上的运算,必须有逆运算成立,
子群不要求存在逆运算,只要其运算满足结合律即可,
交换群:群的定义只说运算满足结合律,可以不满足交换律,
满足交换律的群,叫做交换群或者Abel群
D. 数学上的群,域,环等有什么区别和联系
(1)群:集合G上定义了二元运算记作“ * ”,满足以下四个条件:
封闭性。2.结合律。3.含幺。4.有逆。
那么该集合和二元运算一起构成的代数结构(G,*)称作一个群。
(2)Abel群:二元运算还满足交换律的群。所以Abel群也叫做交换群,是一类特殊的群。二元运算记作“ + ”
(3)半群:集合上定义的二元运算,满足前两个条件:
1.封闭性。2.结合律。
(群一定是半群,但是半群不一定是群。)
有了以上的定义,我们来看一下什么是环和域。
(4)环:设集合R上定义了两个二元运算“ + ”,“ * ”且满足
1.(R,+)是Abel群。
2.(R,*)是半群。
3.两种运算满足分配率,a*(b+c)=a*b+a*c
则集合R和两个二元运算构成的代数结构叫做环。
(5)域:环中的半群结构,满足含幺和交换律,则称作域。可见域是一种特殊的环。
综上:最大的概念是半群,群是半群的子集,Abel群又是群的子集。环是在Abel群的基础上进行“修饰”,也就是再增加一种二元运算使得集合构成半群,且两种运算满足上面提到的分配率。最后域是环的子集,要求增加的这种二元运算还要满足含幺和交换律。
E. 数学中“群”的概念和应用
在数学中,群是一种代数结构,由一个集合以及一个二元运算所组成。要具有成为群的资格,这个集合和运算必须满足一些被称为“群公理”的条件,也就是结合律、单位元和逆元。尽管这些对于很多数学结构比如数系统都是很熟悉的,例如整数配备上加法运算就形成一个群,但将群公理的公式从具体的群和其运算中抽象出来,就使得人们可以用灵活的方式来处理有着非常不同的数学起源的实体,而同时在抽象代数之上保留很多对象的本质结构体貌。群在数学内外各个领域中是无处不在的,使得它们成为当代数学的中心组织原理。[1][2]
群与对称概念共有基础根源。对称群把几何物体的对称特征定为:它由保持物体不变的变换的集合,和通过把两个这种变换先后进行来组合它们的运算构成。这种对称群,特别是连续李群,在很多学术学科中扮演重要角色。例如,矩阵群可以用来理解在狭义相对论底层的基本物理定律和在分子化学中的对称现象。
群的概念引发自多项式方程的研究,由埃瓦里斯特•伽罗瓦在 1830 年代开创。在得到来自其他领域如数论和几何的贡献之后,群概念在 1870 年左右形成并牢固建立。现代群论是非常活跃的数学学科,它以自己的方式研究群。 为了探索群,数学家发明了各种概念来把群分解成更小的、更好理解的部分,比如子群、商群和单群。除了它们的抽象性质,群理论家还从理论和计算两种角度来研究具体表示群的各种方式(群表示)。对有限群已经发展出了特别丰富的理论,这在1983年完成的有限简单群分类中达到顶峰。
F. 请用通俗的语言解释一下数学中群,环,域的概念
群,环,域都是集合,在这个集合上定义有特定元素和一些运算,这些运算具有一些性质
群上定义一个运算,满足结合律,有单位元(元素和单位元进行运算不变),每个元素有逆元(元素和逆元运算得单位元)
例整数集,加法及结合律,单位元0,逆元是相反数,
正数集,乘法及结合律,单位元1,逆元是倒数
环是一种群,定义的群运算(记为+)还要满足交换律。另外环上还有一个运算(记为×),满足结合律,同时有分配律a(b+c)=ab+ac,(a+b)c=ac+bc,由于×不一定有交换律,所以分开写
例整数集上加法和乘法
域是一种环,上面的×要满足交换律,除了有+的单位元还要有×的单位元(二者不等),除了+的单位元外其他元素都有×的逆元
例整数集上加法和乘法,单位元0,1
G. 一个非空集合要想成为群,只要满足封闭率,结合律,幺元律,逆元律中的三个就可以
很抱歉!“集合”是学过,但可能有一定区别,我真的没学过“封闭率”,“幺元律”,“逆元律”这些概念…… 请见谅!
H. 什么是数学上的群
这是抽象代数的内容:
集合是基本概念,相当于一类/一堆/全体/...你该理解,不说了。
群是特殊的集,在它上面可以定义一种运算(通常叫做“乘法”,但跟数的乘法无必然联系),要封闭/可结合/有单位元(类似乘1/加0)/有逆元(类似乘倒数/加相反数)...
例如,正有理数是乘法群,非零有理数也是乘法群,整数集在加法下成群。
注意,群不要求交换律,如果满足交换律,叫阿贝尔群(或加法群)。
环和域的要求就更高了,不必给你讲抽象的,只在数的范围内讨论:
在加/减/乘下封闭的数集是数环,如果数环在除法下也封闭,就叫数域。
某数的倍数全体(包括负的)成一数环,有理数集是最小的数域,实数集/复数集也是数域。
更深的内容参见大学课本,抽象代数/近世代数之类......
I. 数学中,群、环、域、集分别是什么它们的范围不同吗
群:在数学中,群表示一个拥有满足封闭性、结合律、有单位元、有逆元的二元运算的代数结构,包括阿贝尔群、同态和共轭类。
环(Ring):是一类包含两种运算(加法和乘法)的代数系统,是现代代数学十分重要的一类研究对象。其发展可追溯到19世纪关于实数域的扩张及其分类的研究。
域:定义域,值域,数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
集合:简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
范围:
群、环、域都是满足一定条件的集合,可大可小,可可数 也可 不可数,一个元素可以是群‘0’,三个也可以‘0,1,-1’,可数的:以整数为系数的多项式(可以验证也是环),当然R也是;环不过是在群的基础上加上了交换律和另外一种运算,域的条件更强(除0元可逆),常见的一般是数域,也就是:整数,有理数,实数,复数。
群,环,域都是集合,在这个集合上定义有特定元素和一些运算,这些运算具有一些性质。群上定义一个运算,满足结合律,有单位元(元素和单位元进行运算不变),每个元素有逆元(元素和逆元运算得单位元) 例整数集,加法及结合律,单位元0,逆元是相反数, 正数集,乘法及结合律,单位元1,逆元是倒数 环是一种群,定义的群运算(记为+)还要满足交换律。
另外环上还有一个运算(记为×),满足结合律,同时有分配律a(b+c)=ab+ac,(a+b)c=ac+bc,由于×不一定有交换律,所以分开写。 例整数集上加法和乘法。 域是一种环,上面的×要满足交换律,除了有+的单位元还要有×的单位元(二者不等),除了+的单位元外其他元素都有×的逆元。 例整数集上加法和乘法,单位元0,1。
群、环、域代数结构:
群、环、域、向量空间、有序集等等,用集合与关系的语言给出来的统一的形式。首先,由于数学对象的多样性,有不同的类型的集。
如群表示的集为G×G.实际上,群涉及的是二元运算;而向量空间表示的集为F×F→F,F×V→V,V×V→V,向量空间涉及域F中的运算,域F中的元对V中元的运算,V中元的运算.引入基本概念——“合成”(如,群的合成就是乘法运算;向量空间的“合成”有F中的元对V中元的作用乘法,V中元的加法运算),并且,要求“合成”适合给定的公理体系,得到的就是一个数学结构。
事实上,代数结构中,所有概念均可用集合及关系来定义,即用集合及关系的语言来表述。
做为基本概念,若仅仅着眼于“合成”(即“运算”),则这种数学结构称为代数结构,或代数系(统).换言之,代数结构(代数系)就是带有若干合成(运算)的集合。
J. 数学问题中群的概念
多项式的对称假设 是未知数, 是 的二次方程, ,它的两个根 有如下关系: , 和 都有这样的性质:把 和 对换,结果仍然不变,因为 , 凡是有这样性质的 和 的多项式叫做对称多项式。例如, , 也是对称多项式,但是 就不是对称多项式。并且我们习惯上把 和 叫做初等对称多项式。我们来看一般情况,设n∈Z+, a0,a1,……an∈C,a0≠0设现在有一元n次多项式方程: 着名的代数基本定理告诉我们,这样的方程有n个根,假设为 ,那么: 和二次的情形相仿,韦达定理给出: 像如上左边各式: 等这样的多项式,不论我们对 ,作怎样的排列,都是不会变的。也就是说我们把 , 是一个n排列,那么以上的式子是不会变的。这样的式子我们称为 的对称多项式,并且以上的几个对称多项式为初等对称多项式。定义6:设 是C上的一个n元多项式,如果对这n个文字 的指数集{1,2,…n}施行任一个置换后, 都不改变,那么就称 是C上一个n元对称多项式。例如: 是对称多项式,而 就不是,如果把:1→2,2→3,3→1 那么 初等对称多项式的重要性在于定理(对称多项式基本定理):每一个n元对称多项式都可以唯一地表示成初等对称多项式的多项式。现在我们用群的语言去描述n元多项式的对称性。令 ,Sn是M的变换群,即前面提到的n次对称群。如果我们略去字母 而只记下标,这时Sn中的元素可以记为: 是一个n排列。令F 记数域F上n元多项式的全体。对 ,利用 可以定义F 到F 的一个映射, 那么 是集合F 的一个一一变换。为什么? 令 Tn中 那么(Tn,o)满足 ,称之为F 的置换群。如果把n元多项式和平面图形类比,把F 和平面类比,则F 的置换群相当于平面的运动群,(平面的所有保距变换)。 即所有不变 的那些 ,那么我们 满足性质 ,称之为n 元多项式 的对称群。例1: ,那么 ,即四次对称群是 的对称群。例2: 例3: ——Klein 4元群例4: 单位元群例5: 是3阶循环解。定义 : 的一个多项式 称为对称多项式,如果 。即对称群是整个置换群。就这样我们用群来刻划了多项式的对称。如何去构造对称多项式,可见《近世代数》P55。四、数域的对称数域的概念在大学一年级高等代数中就讲过了。一个非空数集F,至少含有一个非零的数,如果F对+,-,×,÷封闭,那么F称为一个数域。 Q,R,C都是数域,最小的数域是Q, 也是一个数域。平面图形是一个几何结构,即是把一个点集M(图形由点组成)连同此点集M中任意两点间的距离作为一个整体来考虑,而其对称群就是M的保持其任两点间的距离不变的变换的全体,这些保持M的几何结构(即距离)的变换的全体,就刻画了几何结构的对称。完全类似地,数域F是一个代数结构,也就是把一个数集F连同此数集F中加、减、乘、除的运算作为一个整体一起来考虑。所以数域F的对称也同样地可以用F的保持代数结构(即运算)的变换的全体来刻画。定义7数域F的自同构 是指:(1) 是F的一个一一变换(2) 定理1若 是F的自同构,那么 有以下系列的性质:(1) (2) ;(3) (4) . 和我们前面讨论平面有限图形K的对称一样两个对称变换的乘积仍是K的一个对称变换,类似地我们有:性质1设 和 是数域F的两个自同构,那么 和 也是F的一个自同构. 性质2令Aut(F)表示F的所有自同构的全体,令o表示变换的乘法,则(Aut(F),o)满足G1)—G4)。定义8 称(Aut(F),o)为数域F的自同构群。我们可以这样来类比:数域F的自同构群相当于图形K的对称群,后者刻画了图形K的对称,前者则刻画了数域的“对称”,——它是图形对称在数域上的一个类比概念。定理2有理数域 的自同构群只有一个元素——恒等自同构I。由此可知,若任意数域F,F ,且 ,那么 。即 , 限制在 上是恒等变换。例1令 是一个数域,是把 添加到 做成的代数扩域。考察F的自同构群。设 ,由定理1知, ,故 ,变换的结果取决于 令 最多只有2个数值 和 ,故F的自同构群只有 可以验证I、 确为F上的自同构。 o I φ I I φ φ φ I 这是一个2元循环群, ,同构于 ,即 的对称群。例2令 这也是一个数域。设 ,同上例, 的作用决定于 和 ,知 和 只有4种组合方式。故Aut(E)只有4个元素 o I φ1 φ2 φ12 I I φ1 φ2 φ12 φ1 φ1 I φ12 φ2 φ2 φ2 φ12 I φ1 φ12 φ12 φ2 φ1 I o (1) (12) (34) (12)(34) (1) (1) (12) (34) (12)(34) (12) (12) (1) (12)(34) (34) (34) (34) (12)(34) (1) (12) (12)(34) (12)(34) (34) (12) (1) Aut(E)与Klein 4元群同构 : ,即 的对称群。我们把上面说的推广到一般情况,定义9给定两个数域F和E,如果F E,则称F是E的子域,而称E为F的扩域。令 即 是使得F中元素不动的E的自同构,Aut(E:F)就是由所有这样的 组成。 F就相当于平面图形的对称中的对称轴或是旋转中心。命题(Aut(E:F),o)满足 ,称为数域E在F上的对称群。例3 和 都不能使到a+b 保持不变。设 , 为n次多项式,n个根为 , 在F上的分裂域为E, ,那么称(Aut(E:F),o)为F上多项式 的根的对称群,也称为F上一元多项式 的Galois群。这个群在解决五次以上多项式方程不可能有根式解的问题上起了关键作用。五、关于“对称与群”的教学(1) 认识运算的广泛性,不只是数可以运算,其他的一些数学对象也可以运算,并且满足一些数的运算所具有的性质。(2) 乘法不一定是可以交换的。(3) 代数结构的概念:一个集合,加上这个集合中的运算,构成一个代数系统,其结构体现在运算关系上。(4) 群的概念:对称群是一个具体的群。满足G1)—G4),就称为群。(5) 数学语言是刻画自然现象的一个极好工具,数学是模式的研究。数学来源于实际问题。参考资料:这是我们当时学的课件内容,希望对你有帮助