Ⅰ 数学符号都有哪些
正号,符号,加好,减号,乘号,除号,等号,大于号,小于号,大于等于号,小于等于号,绝对值号,根号,等等。
数学符号的定义,概念B是概念A的种属性,具有这种关系的概念之间称作具有属种关系的概念。在具有属种关系的两个概念中,概念B具有而概念A不具有的本质属性称作种差。
学习数学的重要性,数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,用记课堂笔记的方法集中上课注意力.学习要安排一个简单可行的计划, 改善学习方法.同时也要适当参加学校的活动。
Ⅱ 高中数学符号有哪些
1、几何符号:
几何是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,常见定理有勾股定理,欧拉定理,斯图尔特定理等。
常用符号有:⊥(垂直)、 ∥(平行)、 ∠(角)、 ⌒ (弧)、⊙(圆)。
2、代数符号:
代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。
常用符号有:∝(正比)、∧(逻辑和)、∨(逻辑或)、 ∫(积分)、 ≠ (不等于)、≤(小于等于)、 ≥(大于等于)、 ≈(约等于)、 ∞(无穷)。
3、运算符号:
运算符号是计算数学时所用的符号,计算符号有加号、减号、乘号、除号。
常用符号有:×(乘)、 ÷(除)、 √(根号)、 ±(加减)。
4、集合符号:
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集。
常用符号有:∪(并)、 ∩(交)、 ∈(属于)。
5、特殊符号:
数学中常用某个特定的符号来表示某个元素。
常用符号有:∑(求和)、 π(圆周率)
6、希腊符号:
在数学中,希腊字母通常被用来表示常数、特殊函数和一些特定的变量。在数学领域,通常大写与小写的希腊字母所代表的意义都会有所分别,并且互不相关。
常用符号有:α (阿尔法)、β(贝塔)、 γ(伽马)、 δ(代尔塔)、 ε(埃普西龙)、 ζ (泽塔)、η (诶塔)、θ (西塔)、ι (埃欧塔)、κ(堪帕)、 λ(兰姆达)、 μ (谬)、ν
Ⅲ 数学符号有哪些呢
内容如下:
1、几何学符号:⊥∥∠⌒⊙≡(恒等于或同余)≌△(三角形)∽(相似)。
2、代数符号:∝∧∨~∫∮≠≤(小于等于)≥(大于等于)≈∞(无穷大)。
3、集合符号:∪(集合并)∩(集合交)∈。
4、特殊符号:∑π(圆周率)。
5、推理符号:↑→←↓↖↗↘↙。
符号的作用
一个符号不仅是普遍的,而且是极其多变。可以用不同的语言表达同样的意思,也可以在同一种语言内,用不同的词表达某种思想和观念。“真正的人类符号并不体现在它的一律性上,而是体现在它的多面性上,而是灵活多变的”。卡西尔认为,正是符号的这三大特性使符号超越于信号。
人的“符号”不是“事实性的”而是“理想性的”,人类意义世界的一部分。信号是“操作者”,而符号是“指称者”,信号有着某种物理或实体性的存在,而符号是观念性的,意义性的存在,具有功能性的价值。
Ⅳ 数学中的运算符号有哪些
1、运算符号:
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
2、数学符号大全及意义之结合符号:
如小括号“()”,中括号“[]”,大括号“{}”,横线“—”=。
如正号“ ”,负号“-”,正负号“ ”(以及与之对应使用的负正号“”)
3、数学符号大全及意义之省略符号:
如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数)
双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠)
(4)数学中符号有哪些扩展阅读:
+ 加号 求两个数的和
- 减号 求两个数的差
× 乘号 求两个数的积
÷ 除号 求两个数的商
^ 乘方 求一个数的几次幂
√ 开方 求一个数的几次方根
d 微分 求一个函数的导数(微分)
∫ 积分 求一个函数的原函数(不定积分)
Ⅳ 数学符号有哪些
1、几何学符号:⊥∥∠⌒⊙≡(恒等于或同余)≌△(三角形)∽(相似)。
2、代数符号:∝∧∨~∫∮≠≤(小于等于)≥(大于等于)≈∞(无穷大)。
3、集合符号:∪(集合并)∩(集合交)∈。
4、特殊符号:∑π(圆周率)。
5、推理符号:↑→←↓↖↗↘↙。
Ⅵ 高中常用的数学符号有哪些
数学符号 如加号(+),减号(-),乘号(×或?),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∬)等。 关系符号 如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≣”是大于或等于符号(也可写作“≤”),“≢”是小于或等于符号(也可写作“≥”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∠”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“?”是“包含”符号等。 结合符号 如小括号“()”中括号“[]”,大括号“{}”横线“—” 性质符号 如正号“+”,负号“-”,绝对值符号“| |”正负号“±” 省略符号 如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∟), ∮因为,(一个脚站着的,站不住) ∭所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。 排列组合符号 C-组合数 A-排列数 N-元素的总个数 R-参与选择的元素个数 n!-阶乘 ,如5!=5×4×3×2×1=120 C-Combination- 组合 A-Arrangement-排列 φ 空集 ∈ 属于(不属于) |A| 集合A的点数 包含 (或下面加 ≠) 真包含 ∪ 集合的并运算 ∩ 集合的交运算 a ∈ A a属于集合A [a] 元素a 产生的循环群 I (i大写) 环,理想 Z/(n) 模n的同余类集合 r(R) 关系 R的自反闭包 s(R) 关系 的对称闭包
f:X→Y f是X到Y的函数 GCD(x,y) x,y最大公约数 LCM(x,y) x,y最小公倍数 C 复数集 N
自然数集: N* 正自然数集 P 素数集 Q 有理数集 R 实数集 Z 整数集 数学符号的意义 符号(Symbol) 意义(Meaning) = 等于 is equal to ≠ 不等于 is not equal to < 小于 is less than > 大于 is greater than || 平行 is parallel to ≣ 大于等于 is greater than or equal to ≢ 小于等于 is less than or equal to ≡ 恒等于或同余 π 圆周率 |x| 绝对值 absolute value of X ∽ 相似 is similar to ≌ 全等 is equal to(especially for triangle ) >> 远远大于号 << 远远小于号 ∞ 无穷大 ln(x) 以e为底的对数 lg(x) 以10为底的对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 x - floor(x) 小数部分 ∫f(x)dx 不定积分 ∫[a:b]f(x)dx a到b的定积分
Ⅶ 数学符号大全
数学符号有:≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪ ∩ ∈ ∵ ∴ ≱ ‖ ∠ ≲ ≌ ∽ √ () 【】{} Ⅰ Ⅱ ⊕ ≰∥α β γ δ ε δ ε ζ Γ。
Ⅷ 数学里经典的符号有哪些
^是为了说明接下去是某个数的几次方.
数学符号
数学符号的发明和使用比数字晚,但是数量多得多.现在常用的有200多个,初中数学书里就不下20多种.它们都有一段有趣的经历.
例如加号曾经有好几种,现在通用“+”号.
“+”号是由拉丁文“et”(“和”的意思)演变而来的.十六世纪,意大利科学家塔塔里亚用意大利文“piu”(加的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号.
“-”号是从拉丁文“minus”(“减”的意思)演变来的,简写m,再省略掉字母,就成了“-”了.
也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少.以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号.
到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号.
乘号曾经用过十几种,现在通用两种.一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的.德国数学家莱布尼茨认为:“×”号象拉丁字母“X”,加以反对,而赞成用“·”号.他自己还提出用“п”表示相乘.可是这个符号现在应用到集合论中去了.
到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号.他认为“×”是“+”斜起来写,是另一种表示增加的符号.
“÷”最初作为减号,在欧洲大陆长期流行.直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除.后来瑞士数学家拉哈在他所着的《代数学》里,才根据群众创造,正式将“÷”作为除号.
平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号.“r”是由拉丁字线“r”变,“——”是括线.
十六世纪法国数学家维叶特用“=”表示两个量的差别.可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来.
1591年,法国数学家韦达在菱形中大量使用这个符号,才逐渐为人们接受.十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“∽”表示相似,用“≌”表示全等.
大于号“>”和小于号“<”,是1631年英国着名代数学家赫锐奥特创用.至于“≯”、“≮”、“≠”这三个符号的出现,是很晚很晚的事了.大括号“{}”和中括号“〔〕”是代数创始人之一魏治德创造的.
数学符号一般有以下几种:
(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率∏.
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ),对数(log,lg,ln),比(:),微分(d),积分(∫)等.
(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号等.
(4)结合符号:如圆括号“()”方括号“〔〕”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C ),幂(aM),阶乘(!)等.
符号 意义
∞ 无穷大
∏ 圆周率
│x│ 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
Ⅸ 数学符号有哪些
数学符号,读法
常用数学输入符号: ≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪ ∩ ∈ ∵ ∴ ≱ ‖ ∠ ≲ ≌ ∽ √ () 【】{} Ⅰ Ⅱ ⊕ ≰∥α β γ δ ε δ ε ζ Γ
大写 小写 英文注音 国际音标注音 中文注音
Α α alpha alfa 阿耳法
Β β beta beta 贝塔
Γ γ gamma gamma 伽马
Γ δ deta delta 德耳塔
Δ ε epsilon epsilon 艾普西隆
Ε δ zeta zeta 截塔
Ζ ε eta eta 艾塔
Θ ζ theta ζita 西塔
Η η iota iota 约塔
Κ θ kappa kappa 卡帕
∧ ι lambda lambda 兰姆达
Μ κ mu miu 缪
Ν λ nu niu 纽
Ξ μ xi ksi 可塞
Ο ν omicron omikron 奥密可戎
∏ π pi pai 派
Ρ ξ rho rou 柔
∑ ζ sigma sigma 西格马
Τ η tau tau 套