导航:首页 > 数字科学 > 高中数学反证法如何设

高中数学反证法如何设

发布时间:2023-03-24 02:00:40

‘壹’ 高中数学反证法

简单!
先介绍一下反证猛信亏法:在数学坦档上枝神只有是或不是,假设它不是,结果与定律不合,那反证成功。所以证明是另一个答案。
具体:
假设一个三角形可以有两个直角
所以这时三角形的内角和必定大于180度
又因为三角形的内角和一定是180度,
所以三角形不可能有两个直角或钝角。

‘贰’ 高二数学 怎么用反证法 解题 步骤形式是什么

来自上海大学
一 反证法的概念 二 反证法的逻辑依据、种类及步骤 (1)反证法逻辑依据 (2)反证法种类 (3)反证法步骤
三 中学数学中宜用反证法的适用范围 (1)否定性命题 (2)限定式命题 (3)无穷性命题 (4)逆命题 (5)某些存在性命题 (6)全称肯定性命题 (7)一些不等量命题的证明 (8)基本命题 四 运液歼用反证法应该注意的问题 (1)必须正确否定结论 (2)必须明确推理特点 (3)了解矛盾种类
浅谈反证法在中学数学中的应用
论文摘要 论文摘要 本文重点阐明反证法的概念,逻辑依据“矛盾律”和“排中律” , 反证法的种类包括归谬法简单归谬法和穷举归谬法, 反证法证明的一 般步骤(反设、归谬 、结论) ,证题的实践告诉我们:下面几种命题 一般用反证法来证比较方便, 否定性命题、 限定式命题、 无穷性命题、 逆命题、 某些存在性命题、 全称肯定性命题、 一些不等量命题的证明、 基本命题。运用反证法应该注意的问题,必须正确否定结论、必须明 确推理特点、了解矛盾种类。 关键词: 关键词: 反证法 证明 假设 矛盾 结论
有个很贺宽着名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和 小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知 是苦的,独有王戎没动,王戎说: “假如李子不苦的话,早被路人摘光了,而这 树上却结满了李子,所以李子一定是苦的。 ”这个故事中王戎用了一种特殊的方 法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要 讨论的反证法。
一 反证法的概念
反证法是从反面的角度思考问题的证明方法,属于“间接证明”的一类,即 肯定题设而否定结论,从而导出矛盾,推理而得。 反证法是数学中常用的间接证明方法之一。 反证法的逻辑基础是形式逻辑基 本规律中的排中律。通常反证法是从待证命题的结论的反面入手进行正确推理, 推出矛盾,从而得出原结论的反面不真,由此肯定原结论为真。中学代数中,一些 起始性命题﹑否定性命题﹑唯一性命题﹑必然性命题﹑结论以 “至多……”“至 或 少……”的形式出现的命题﹑“无限性”的命题﹑一些不等式的证明等用反证法 来证明可收到较好的效果。 假设命题判断的反面成立,在已知条件和“否定命题判断”这个新条件下, 通过逻辑推理,得出与公理﹑定理、题设、临时假定相矛盾的结论或自相矛盾, 从而断定命题判断的反面不成立,即证明了命题的结论一定是正确的,当命题由 已知不易直接证明时,改证它的逆命题的证明方法叫反证法。 用框图表示如下: 题断反面 前此定理 本题题设 前此公理 前此定义

第一
用穷举法不能举出所有个体的,例如 证明:素数有无穷多个;无理数的个数不比无理数少等
第二
用已学的知识不能证明出结论的,例如:如果一个三角形的两条边不相等,那么这两条边所对的角也不相等.
因为高中数学内容涉及范围较广,因此这种情况比较多见。
第三
用直接证明步骤繁琐且易出错的,这种情况多出现在解几中的圆锥曲线部分
反证法
定义:证明定理的一种方法,先提出和定理中的结论相反的假定,然后从这个假定中得出和已知条件相矛盾的结果来,这样就否定了原来的假定而肯定了定理。闹拍冲也叫归谬法。

适用范围:证明一些命题,且正面证明有困难,情况多或复杂,而否定则比较浅显

具体方法(E.G):
命题r=在C下,若A则B
反证:若A则¬B
证明¬B与A的矛盾

举例:欲证“若P则Q”为真命题,从否定其结论即“非Q”出发,经过正确的逻辑推理导出矛盾,从而“非Q”为假,即原命题为真,这样的证明方法称为反证法,
先提出和定理中的结论相反的假定,然后从这个假定中得出和已知条件相矛盾的结果来。
【反证法】 间接论证的一种。先论证与原论题相矛盾的论题即反论题为假,然后根据排中律确定原论题为真。其论证过程可以表示如下:

[求证] A(原论题)
[证明] (1)设非A真(非A为反论题)
(2)如果非A,则B(B为由非A推出的论断)
(3)非B(已知)
(4)所以,并非非A(根据充分条件假言推理的否定后件式)
(5)所以,A(非非A=A)。
例如,语言学工作者论证“语言的声音和它所表示的事物之间没有必然联系”这一论题时运用反证法论证如下:“声音和词所表示的事物之间并没有什么必然的联系,并非

某一个声音必然表示某一个对象。声音和事物的结合假如有什么必然联系,世界上所有的语言中表示同一事物的词的声音就应当是相同的。既然世界上表示同一事物的词的声音各有不同,可见语言的声音和所表示的事物之间是没有必然联
系的。”这一段论述的反证过程分析如下:
论题:语言的声音和所表示的事物之间没有必 然的联系(在开头提出,最后又做归结)
反论题:声音和事物的结合有必然联系。
设反论题为真,然后进行推导:“声音和事物的结合假如有什么必然联系,世界上所有的语言中表示同
一事物的词的声音就应是相同的。”后件显然不能成立:“世界上表示同一事物的词的声音各有不同”。根据充分条件假言推理的否定式,否定后件就必然否定前件,从而证明反论题“声音和事物的结合有必然
联系”是假的。然后根据排中律,证明原论题是真的。需要注意的是,反证法是通过先论证反论题假,然后由假推真,确定原论题真。因此反论题与原论题必须是矛盾关系,不能是反对关系。因为反对关系的判断可以同假,即从一个判断的假不能必然推出另一判断的真。
反证法在数学中经常运用。当论题从正面不容易或不能得到证明时,就需要运用反证法

望采纳

‘叁’ 反证法的基本步骤

反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之败桐否定”。应用反慧握证法证明的主要三步是:否定结论

推导出矛盾

结论成立。实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设;
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;
第三步,结论:说明反设不成立,从而肯定原命题成立。
在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒察碧坦,才能推断原结论成立,这种证法又叫“穷举法”。

‘肆’ 几何里面的“反证法”是什么法怎么用

下面是复制的,我先自己说一下吧,比如说欲证'两直线平行,内错角相等'可先设'两直线平行,内错角不等'他与两直线平行,同位角相等'的公理相悖,则假设错误,原命题得证.在高中,反证法与数学归纳法很有效.

反证法 反证法是数学中常用的一种方法,而且有些命题只能用它去证明。这里作一简单介绍。用反证法证明一个命题常采用以下步骤:
1) 假定命题的结论不成立,
2) 进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾,
3) 由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的。
4) 肯定原来命题的结论是正确的。
用反证法证明命题实际上是这样一个思维过程:我们假定“结论不成立“,结论一不成立就会出毛病,这个毛病是通过与已知条件矛盾;与公理或定理矛盾的方式暴露出来的。这个毛病是怎么造成的呢?推理没有错误,已知条件,公理或定理没有错误,这样一来,唯一有错误的地方就是一开始的假定。”结论不成立“与”结论成立“必然有一个正确。既然“结论不成立”有错误,就肯定结论必然成立了。
反证法也称为归谬法。英国数学家哈代(G.H.Hardy,1877-1947)对于这种证法给过一个很有意思的评论。在棋类比赛中,经常采用一种策略,叫“弃子取势”,即牺牲一些棋子以换取优势。哈代指出,归谬法是远比任何棋术更为高超的一种策略。棋手可以牺牲的是几个棋子,而数学家可以牺牲的整个一盘棋。归谬法就是作为一种可以想象的最了不起的策略而产生的。
我们来证明定理1和定理4的互逆性。需要证明两个命题:
(1) 由定理1的成立得出定理4的成立;
(2) 由定理4的成立得出定理1的成立;
证明(1)。用反证法。从否定定理4 的结论开始。假定有 ,那么根据定理1应当有 ,而这与定理4的条件矛盾。所要的矛盾找到了。定理的正确性得证。
思考题 读者自己证明,由定理4的成立得出定理1的成立。
我们用集合的观点作些说明。设
{在闭区间上的连续函数}; ={在闭区间上取得最值的函数}。
这是两个不同的集合。上面的定理告诉我们,
即 是 的子集(图2)。一个函数不在 中,一定不在 中,这就是逆否定理。它与正定理同真同假。
同样的道理,逆定理与否定理同真同假。
思考题 证明,逆定理与否定理同真同假。
弄清定理的结构和定理的四种形式是重要的,为下面的充要条件研究作好了准备。但这只是问题的一个方面。要学好定理,我们还需要考虑以下五个问题:怎样证明定理,怎样推广定理,怎样运用定理,怎样理解定理。

‘伍’ 什么叫反证法,如何运用反证法证明中学中的数学问题

反证法是先假设命题悉含扮的结论不成立,经过推理得出矛盾,从而证明原命题成立。
有时候也会证明一个命题的逆否命题是正确的,这就证明了原命题。这种情况适用于其逆否命题比较容易证明。
适用范围:证明一些命题,且正面证明有困难,情况多或复杂,而逆老御否命题则比较浅显。
具体方法(E.G):
命题r=在C下,若A则B
反证:若A则¬B
证明¬B与A的矛盾
举例:欲证“若P则Q”为真命题,从否定其结论即“非Q”出发,经过正确的逻辑推理导出矛盾,从而“非Q”为假,即原命题为真,这样的证明方法称为反证法,
先提出和定理中的结论相反的假定,然后从这个假定中得出和睁灶已知条件相矛盾的结果来。
定义:
【反证法】
间接论证的一种。先论证与原论题相矛盾的论题即反论题为假,然后根据排中律确定原论题为真。其论证过程可以表示如下:
[求证]
A(原论题)
[证明]
(1)设非A真(非A为反论题)
(2)如果非A,则B(B为由非A推出的论断)
(3)非B(已知)
(4)所以,并非非A(根据充分条件假言推理的否定后件式)
(5)所以,A(非非A=A)。

‘陆’ 反证法的基本步骤

反设、归谬和存真


反证法的论证过程如下:首先提出论题:然后设定反论题,并依据推理规则进行推演,证明反论题的虚假;最后根据排中律,既然反论题为假,原论题便是真的。在进行反证中,只有与论题相矛盾的判尘桥断才能作为辩宽反论题,论题的反对判断是不能作为反论题的,因为具有反对关系的两个判断可以同时为假。携兄亮
反证法中的重要环节是确定反论题的虚假,常常要使用归谬法。反证法是一种有效的解释方法,特别是在进行正面的直接论证或反驳比较困难时,用反证法会收到更好的效果。
阅读全文

与高中数学反证法如何设相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:735
乙酸乙酯化学式怎么算 浏览:1399
沈阳初中的数学是什么版本的 浏览:1344
华为手机家人共享如何查看地理位置 浏览:1037
一氧化碳还原氧化铝化学方程式怎么配平 浏览:878
数学c什么意思是什么意思是什么 浏览:1403
中考初中地理如何补 浏览:1293
360浏览器历史在哪里下载迅雷下载 浏览:695
数学奥数卡怎么办 浏览:1381
如何回答地理是什么 浏览:1017
win7如何删除电脑文件浏览历史 浏览:1049
大学物理实验干什么用的到 浏览:1479
二年级上册数学框框怎么填 浏览:1693
西安瑞禧生物科技有限公司怎么样 浏览:955
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1332
学而思初中英语和语文怎么样 浏览:1644
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1480
数学中的棱的意思是什么 浏览:1053