导航:首页 > 数字科学 > 数学sin怎么求

数学sin怎么求

发布时间:2023-03-24 10:48:50

❶ sin三角函数公式有哪些,怎么计算

一、sin度数公式

1、sin 30= 1/2

2、sin 45=根号2/2

3、sin 60= 根号3/2

二、cos度数公式

1、cos 30=根号3/2

2、cos 45=根号2/2

3、cos 60=1/2

三、tan度数公式

1、tan 30=根号3/3

2、tan 45=1

3、tan 60=根号3

(1)数学sin怎么求扩展阅读:

1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标烂桥或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。

2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数告历悔学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

3、常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。

4、早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是袜正等价的。

5、喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的着作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。

6、古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。

❷ 数学里用sin、cos、tan求度数怎么求

数学里用sin、cos、tan求度数要以靠以下公式:

(2)数学sin怎么求扩展阅读:

常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。

早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。

❸ 三角函数怎样算

三角函数是数学中属于初等函数中的超越函数的一类函数,是以实数为自变量的函数。
三角函数有六种基本函数(初等基本表示):函数名 正弦 余弦 正切 余切 正割 余割。
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
角三角函数间的基本关系式:
·平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·积的关系:
sinα=tanα*cosα cosα=cotα*sinα
tanα=sinα*secα cotα=cosα*cscα
secα=tanα*cscα cscα=secα*cotα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1

三角函数恒等漏咐变形公式:
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)

·倍角公式拿搜轮:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

·半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/消信(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

❹ sin函数求值公式是多少

公式如下:

sin0=sin0°=0

cos0=cos0°=1

tan0=tan0°=0

sin15=0.650;sin15°=(√6-√2)/4

cos15=-0.759;cos15°=(√6+√2)/4

tan15=-0.855;tan15°=2-√3

sin30=-0.988;sin30°=1/2

cos30=0.154;cos30°=√3/2

tan30=-6.405;tan30°=√3/3

sin45=0.851;sin45°=√2/2

cos45=0.525;cos45°=sin45°=√2/2

tan45=1.620;tan45°=1

sin60=-0.305;sin60°=√3/2

cos60=-0.952;cos60°=1/2

tan60=0.320;tan60°=√3

sin75=-0.388;sin75°=cos15°

cos75=0.922;cos75°=sin15°

tan75=-0.421;tan75°=sin75°/cos75° =2+√3

sin90=0.894;sin90°=cos0°=1

cos90=-0.448;cos90°=sin0°=0

tan90=-1.995;tan90°不存在

sin105=-0.971;sin105°=cos15°

cos105=-0.241;cos105°=-sin15°

tan105=4.028;tan105°=-cot15°

sin120=0.581;sin120°=cos30°

cos120=0.814;cos120°=-sin30°

tan120=0.713;tan120°=-tan60°

sin135=0.088;sin135°=sin45°

cos135=-0.996;cos135°=-cos45°

tan135=-0.0887;tan135°=-tan45°

sin150=-0.7149;sin150°=sin30°

cos150=-0.699;cos150°=-cos30°

tan150=-1.022;tan150°=-tan30°

sin165=0.998;sin165°=sin15°

cos165=-0.066;cos165°=-cos15°

tan165=-15.041;tan165°=-tan15°

sin180=-0.801;sin180°=sin0°=0

cos180=-0.598;cos180°=-cos0°=-1

tan180=1.339;tan180°=0

sin195=0.219;sin195°=-sin15°

cos195=0.976;cos195°=-cos15°

tan195=0.225;tan195°=tan15°

sin360=0.959;sin360°=sin0°=0

cos360=-0.284;cos360°=cos0°=1

tan360=-3.380;tan360°=tan0°=0

随着角度的增大(或减小)而减小(或增大)。

❺ sin的数学公式

sin=1/cos
两角和公式
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-sinbcosa 
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)
tan(a-b)=(tana-tanb)/(1+tanatanb)
cot(a+b)=(cotacotb-1)/(cotb+cota) 禅谈
cot(a-b)=(cotacotb+1)/(cotb-cota)
倍角公式
tan2a=2tana/[1-(tana)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
sin2a=2sina*cosa
半角公式
sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))
cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) 
tan(a/贺坦碰2)=(1-cosa)/sina=sina/(1+cosa)
和差化积
2sinacosb=sin(a+b)+sin(a-b)
2cosasinb=sin(a+b)-sin(a-b) )
2cosacosb=cos(a+b)-sin(a-b)
-2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2
cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosb
积化和差信散公式
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a)
cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a)
cos(pi/2+a)=-sin(a)
sin(pi-a)=sin(a)
cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a)
cos(pi+a)=-cos(a)
tga=tana=sina/cosa
万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
其它公式
a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]
a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
其他非重点三角函数
csc(a)=1/sin(a)
sec(a)=1/cos(a)
双曲函数
sinh(a)=(e^a-e^(-a))/2
cosh(a)=(e^a+e^(-a))/2
tgh(a)=sinh(a)/cosh(a)

❻ 如何快速求出sin,cos,tan的值

sin,cos,tan都是我们常见的三角函数这类型的函数,这类型符号在数学书本当中能够非常容易得看见。因为在数学书本当中只要遇上几何的题目都需要这三种函数进行解答。因此,我们在观看初中或者高中的数学书本的时候,很容易就能发现轮衫巧这些符号的出现。那么这三个符号分别对腊键应的是正弦函数,余弦函数以及正切函数。他们之间也有着一定的关联,这关联也是我们做题目最重要的方法。因为了解他们的关联性我们才能够有一个函数转变为另,正弦函数和余弦函数是一对互为导数的数字。

只有对于这些函数的数值有着一定的记忆,才能更好的解答相关的数学问题。

❼ 数学中sin是什么意思,怎么计算,能举例说明吗

sin是指几何数学中某一角度度的正弦值。英文缩写即sin或者SIN。直角三角形为“勾三股四弦五”;正弦是股与弦的比例,正弦=股长/弦长;公式:sinA=∠A的对边/∠A的斜边。勾股弦放到圆里,弦是圆周上两点连线,最大的弦是直径。把直角三角形的弦放在直径上,股就是长的弦,即正弦,勾就是短的弦,即余下的弦--余弦。现代正弦公式是将一个角放入直角坐标系中使角的始边与X轴的非负半轴重合在角的终边上取一点A(x,y)过A做X轴的垂线则r=(x^2+y^2)^(1/2)。按现代说法,正弦是直角三角形某个角(非直角)的对边与斜边之比。基本信息中文名:正弦值英文名:sin表达式:sin别称:塞定义在直角三角形中,∠α(非直角)的对边与斜边的比叫做∠α的正弦,记作sinα,即sinα=∠α的对边/∠α的斜边古代说法,正弦是股与弦的比例。古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边。股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”。正在加载正弦示意图正弦是∠α(非直角)的对边与斜边的比,余弦是∠α(非直角)的邻边与斜边的比。勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。把直角三角形的弦放在直径上,股就是长的弦,即正弦,勾就是短的弦,即余弦按现代说法,正弦是直角三角形的对边与斜边之比。表示将一个角放入直角坐标系中使角的始边与X轴的非负半轴重合在角的终边上取一点A(x,y)过A做X轴的垂线正在加载正弦的最大值为1,最小值为-1。诱导公式sin(2kπ+α)=sinαsin(π/2-α)=cosαsin(π/2+α)=cosαsin(-α)=-sinαsin(π+α)=-sinαsin(π-α)=sinα两角和差公式sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβ二倍角公式SIN(2a)=2sina*cosa特殊值0°sina=0cosa=1tana=030°sina=1/2cosa=√3/2tana=√3/345°sinα=√2/2cosα=√2/2tanα=160°sinα=√3/2cosα=1/2tanα=√390°sinα=1cosα=0tanα不存在120°sinα=√3/2cosα=-1/2tanα=-√3150°sinα=1/2cosα=-√3/2tanα=-√3/3180°sinα=0cosα=-1tanα=0270°sinα=-1cosα=0tanα不存在360°sinα=0cosα=1tanα=0

❽ 注意了,sin是数学里的sin(函数),不要搞错. 那怎么计算呢

sin是慧滚正弦函数,在直角三角形中锐角所对的旅厅边和最长边的比
cos是余拆碧隐弦函数,在直角三角形中锐角所相邻的边和最长边的比
cot是余切函数,在直角三角形中锐角所相邻的边和相对边的比

❾ 数学中sin是什么意思,怎么用

sin: 指在直角三角形中,∠α(非直角)的对边与斜边的比叫做∠α的正弦,记作sinα,正弦是勾与弦的比例。 古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边。 股就是人的大腿,古人称直角三角形中长的那个直角边为“股”。

运用:在直角三角形中,∠α(非直角),sinα=∠α的对边/∠α的斜边。

sin(α+β)=sinα·cosβ+cosα·sinβ

sin(α-β)=sinα·cosβ-cosα·sinβ

sin(2a)=2sina*cosa

(9)数学sin怎么求扩展阅读

定理

正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即 a/sin A=b/sin B=c/sin C

正弦函数的定理在三角形求面积中的运用-

S△=c2sinAsinB/2sin(A+B)(S△为三角形的面积,三个角为∠A∠B∠C,对边分别为a,b,c,)

S△=1/2acsinB=1/2bcsinA=1/2absinC (三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)

另外,当sin值在180~360之间会出现负数,在360以上则会重复。

阅读全文

与数学sin怎么求相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:704
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1317
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1022
大学物理实验干什么用的到 浏览:1448
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:829
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1606
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017