A. 数学建模是什么
数学建模就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
(1)数学建模有什么分类扩展阅读:
从基本物理定律以及系统的结构数据来推导出模型。
1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。
从大量的观测数据利用统计方法建立数学模型。
1. 回归分析法--用于对函数f(x)的一组观测值(xi, fi)i=1,2…n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
3. 回归分析法--用于对函数f(x)的一组观测值(xi, fi)i=1,2…n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
4. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
B. 数学建模分类模型有哪些
数学建模常用模型有哪些?
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算
法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要
处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题
属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、
Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉
及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计
中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是
用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实
现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛
题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好
使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只
认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非
常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常
用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调
用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该
要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab
C. 常见30种数学建模模型是什么
1、蒙特卡罗算法。
2、数据拟合、参数估计、插值等数据处理算法。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
4、图论算法。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
6、最优化理论的三大非经典算法。
7、网格算法和穷举法。
8、一些连续离散化方法。
9、数值分析算法。
10、图象处理算法。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。
要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。
(3)数学建模有什么分类扩展阅读:
数学建模是一个让纯粹数学家(指只研究数学,而不关心数学在实际中的应用的数学家)变成物理学家、生物学家、经济学家甚至心理学家等等的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。
D. 数学建模题型之分类
What:以样本到总体的距离为依据的直观判别方法
How:先根据已知分类的数据,分别计算各类的重心 然后计算待判样本与各类的距离,与哪一类距离最 近,就判待判样本x属于哪一类。
摘自:
IBMlib https://wiki.mbalib.com/wiki/%E8%B7%9D%E7%A6%BB%E5%88%A4%E5%88%AB
源程序详见 JuLiPanBie.m
What:根据Bayes准则进行判别的方法
How:设有两个 总体 ,它们的 先验概率 分别为 q 1 、 q 2,各总体的密度函数为 f 1( x ) 、 f 2( x ) ,在观测到一个 样本x 的情况下,可用 贝叶斯公式 计算它来自第k个总体的 后验概率 为:
一种常用判别准则是:对于待判样本 x ,如果在所有的 P ( G k / x )中 P ( G h / x )是最大的,则判定 x 属于第 h 总体。通常会以样本的 频率 作为各总体的先验概率。
What:一种先进行高维向低位投影,再根据 距离判别 的一种方法。
How:通过将多维数据投影至某个方向上,投影的原则是将总体与总体之间尽可能分开,然后再选择合适的判别规则,将待判的 样本 进行分类判别。所谓的投影实际上是利用方差分析的思想构造也一个或几个超平面,使得两组间的差别最大,每组内的差别最小。
费歇尔判别函数和判别准则
判别函数:
判别准则:
, y 1 > y 2, y > y 0
, y 1 > y 2, y < y 0
, y 1 < y 2, y > y 0
, y 1 < y 2, y < y 0
将两类均值及待判样本 x 的各项 指标 代入判别函数可求得三个函数值 y 1, y 2, y ,一般将 y 1, y 2的加权平均值 y 0。
聚类分析的类型详见: https://blog.csdn.net/abc200941410128/article/details/78541273
由于用matlab实现较为繁杂,故优先采用SPSS
常用方法:系统聚类、k-means聚类、两步聚类
基本操作:打开->数据->.xls->导入->分析->分类->...聚类
分析树状图、冰柱图
树状图(谱系图):纵向观察引出来几条虚线就表示分几类
冰柱图:冰柱是自上而下垂悬的
详见: https://wenku..com/view/4a2640f0f90f76c661371af2.html (系统、k-means)
https://blog.csdn.net/OYY_90/article/details/82699539 (两步聚类)
官方文档: https://www.ibm.com/support/knowledgecenter/zh/SSLVMB_25.0.0/statistics_mainhelp_ddita/spss/base/idh_twostep_main.html (两步聚类)
有关概念的快速理解及matlab实现: https://blog.csdn.net/acelit/article/details/78187715
熟悉Matlab的GA工具箱及其函数
What:一种通用概率算法,在一定时间内寻找一个很大搜寻空间中的近似最优解。
How:模拟退火的原理也和金属退火的原理近似:我们将热力学的理论套用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
主要用于图像分类。(略)
E. 有哪些数学模型类型
用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。静态和动态模型。静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。
分布参数和集中参数模型。分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。连续时间和离散时间模型。模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。随机性和确定性模型:随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。
F. 数学模型有哪些
数学模型(mathematical model)就是用数学的语言、方法去近似地刻画实际,描述现实问题的数学公式、图形或算法。
数学模型可按不同的方式进行分类。
按照模型的应用领域,可分为人口模型、生物模型、生态模型、交通模型、环境模型、作战模型、社会模型、经济模型、医学模型、机械模型等。
按照建立模型的数学方法,可分为微分方程模型、几何模型、网络模型、运筹模型、随机模型等。
按照建模目的,可分为描述模型、分析模型、预测模型、决策模型、控制模型等。
按照对模型结构的了解程度,可分为白箱模型、灰箱模型、黑箱模型。白箱是指对所涉及问题的机理很清楚,黑箱是完全不了解问题的内部机理,灰箱则介于两者之间。
根据模型的表现形态还可分为:静态模型和动态模型、解析模型和数值模型、离散模型和连续模型、确定性模型和随机性模型。
数学模型和数学建模介绍
数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些规律建立起变量、参数之间的关系。求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题。数学建模最重要的特点在于它是一个接受实践检验、多次修改、逐渐完善的过程。
数学建模没有固定的格式和标准,也没有明确的方法,通常由明确问题、合理假设、搭建模型、求解模型、分析检验等五个步骤组成。
一个理想的数学模型,应尽可能满足以下两个条件:
模型的可靠性:在误差允许范围内,能正确反映客观实际;
模型的可解性:模型能够通过数学计算,得到可行解。
一个实际问题往往很复杂的,影响因素也有很多,要解决实际问题,就要将实际问题抽象简化、合理假设,确定变量和参数,建立合适的数学模型,并求解。模型的可靠性和可解性通常互相矛盾,一般总是在模型可解性的前提下力争较满意的可靠性。
G. 数学建模模型有哪些适合解决什么问题
数学模型有很多类,解决的问题从基本的原料供应关系到复杂的火箭升空、发动均可以建立模型,但是一般在大学学习的都是基本的一些定式模型,具体的你可以看书,大学数模班主要的是培训大家的基本编程能力、英语翻译阅读理解翻译和团队协作以及基本数学知识。
H. 数学模型的分类有哪些
1、按照模型的应用领域分:人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型;
2、按照建立模型的数学方法分:初等模型、几何模型、微分方程模型、统计回归模型、数学规划模型;
3、按照模型的表现特性分:确定性模型和随机性模型、静态模型和动态模型、线性模型和非线性模型、离散模型和连续模型;
4、按照建模目的分:描述模型、预报模型、优化模型、决策模型、控制模型等。