导航:首页 > 数字科学 > 如何在数学后面加年

如何在数学后面加年

发布时间:2023-03-28 08:15:13

‘壹’ 数学解答题

中考数学解答难题的十二种方法 引导语:下面我给大家带来中考数学解答难题的十二种方法,希望能够帮助到您,谢谢您的阅读,祝您阅读愉快。 方法一:一“慢”一“快”,相得益彰 有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要侍码慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。 方法二:确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 方法三:调理大脑思绪,提前进入数学情境 考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。 方法四:“内紧外松”,集中注意,消除焦虑怯场 集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。 方法五:沉着应战,确保旗开得胜,以利振奋精神 良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的'开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心指谈液理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。 方法六:回避结论的肯定与否定,解决探索性问题 对探索性问题,不必追求结论的"是"与"否"、"有"与"无",可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。 方法七:应用性问题思路:面—点—线 解决应用性问题,首先要全面调查题意,迅速接受概念,此为"面";透过冗长叙述,抓住重点词句,提出重点数据,此为"点";综合联系,提炼关系,依靠数学方法,建立数学模型,此为"线",如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。 方法八:“六先六后”,因人因卷制宜 在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。 1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。 2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体唯物把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。 3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。 方法九:讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成中考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、"感情分"也就相应低了,此所谓心理学上的"光环效应"。"书写要工整,卷面能得分"讲的也正是这个道理。 方法十:面对难题,讲究方法,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。 1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为"已知",完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。 方法十一:以退求进,立足特殊 发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对"特殊"的思考与解决,启发思维,达到对"一般"的解决。 方法十二:执果索因,逆向思考,正难则反 对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。 ;

‘贰’ 请问学习高中数学有什么用,对人今后的益处是什么

数学与我们的生活

史克礼

各位领导,各位老师:大家好!

今天很高兴有这样的机会和大家进行交流。我交流的题目是:数学与我们的生活。首先我说明:数学虽是我的专业,但我的数学知识非常非常有限,只能参考大量的资料,所以难免有“拿来我用”的嫌疑。不妥指出,请指正。今天的报告如果对大家有一点点用处,我就感到很欣慰了。

我的报告分为三个部分:一是数学到底有没有用?二是数学有什么用处?三是数学意识与数学思维。

一、数学到底有没有用

我们知道,大多数人在经历义务教育时读了9年数学,高中毕业时就读了12 年数学。在大学里,无论是学理工类还是经济管理,都要学习数学。所以每个人花在学习数学上的时间最长。现在我们回过头来想一想,我们学到的数学知识是否有用?数学对我们有什么帮助?在日常生活中我们有没有用到数学?我感觉好像不如其他基础课程那么明显。事实上,我们学习的数学知识还是300年前或更早的一些知识,对于近代数学我们不是很了解。比如,媒体上讲歌德巴赫猜想,好像歌德巴赫猜想就是数学,其实不是这样。不仅一般人不了解,就是数学的专家对隔行的数学也不是很了解。这种情况恰好与其他的科学形成了显明的对照,而且这种对照是非常明显的。因为即使老百姓,只要稍微注意一点科学或技术的发展,就知道现在的微机、网络。网络的普及只有几年的时间。再说最近同样普及的东西----激光,1960年开始有第一台激光器。还有基因组计划是在20世纪80年代开始的,这个一般了解科学的人都知道。克隆当然是家喻户晓了,1997年开始的;干细胞,1998年才有;纳米技术,也是90年代才有。可是你要问数学有哪些成就,在90年代有什么成就?不仅大多数普通人不知道,就连数学家也不知道。换句话说,20世纪有哪些重要的数学家?也不知道。我就知道华罗庚、苏步青、陈景润、陈省身和美籍华人丘成桐。对于世界数学家就知道的更少。所以,数学虽然经过了如此费劲的教育,但是我们自己的知识和在日常生活中的应用却非常之少。这是一个矛盾,我们该如何理解这个问题?在讲数学和日常生活之前,我首先要谈谈数学现在到底有没有用?

首先我们要有一个概念:现代数学非常重要,而且对于现在的科学技术起了非常重要的作用。只不过数学是一个幕后英雄!

我们看看20世纪一些重要成就。

数学成就首先是数学家的成就,20世纪最伟大的数学家之一就是诺依曼。虽然现在计算机已换了好几代,但它的程序设计的思想确实是诺依曼提出的,所以人们常称诺依曼是“电子计算机之父”。而且现在还说诺依曼型计算机,想必大家还是知道他的名字的。诺依曼是一个很伟大的数学家,计算机只是他的成就的十分之一。它的成就中很重要的一个是对策论。对策论的应用现在已经非常广泛,而且好多经济学家由于对策论方面的成就拿了诺贝尔奖。像诺依曼这样的数学家,能提出计算机设计思想中最基本的东西,而且至今没有太多的改进。虽然工程技术人员、物理学家在计算的发展方面做出了不可低估的贡献,但作为数学家的诺依曼却首先提出了整个思想。

第二个例子,影响20世纪最重要的一件事情是核武器。最初,美国在研制原子弹和氢弹时,当然是物理学家、化学家和许多其他重要的科学家作主角。但是像制造原子弹这样的技术,没有数学家行不行?光靠试错实验行不行?只要翻开历史,你就会发现数学家在这里面起了很重要的作用。例如,在制造氢弹时,物理学家估计氢弹不可能制造出来,因为氢弹爆炸会使整个地球和地球的大气燃烧,若是整个地球都毁了,氢弹就无法制造出来。这时要验证或否定这个观点是不能靠实验的,在这种完全未知的情况下数学起了作用。经过数学家的计算,断定氢气爆炸不至于引起整个大气的燃烧,可以造出氢弹。而造原子弹时需要做多大体积,选择怎样的爆炸方式,也无法进行实验,需要完全依靠数学的计算。所以,美国在开始造原子弹时,经历了不能做实验,只能靠数学计算的过程。

第三个例子,经济学现在是一门非常重要的科学,90年代经济上最热门的经济理论叫金融数学。金融数学是关于股票、投资的学科。对于股票的研究正好从100多年前,就是1900年开始。有位叫庞加莱的大数学家是20世纪最了不起的数学家之一,他在100对年前就知道混浊,他是最早提出混浊的人。他有一个学生叫巴谢里埃,在研究股票市场的时候,发现这个股票市场和布朗运动完全一样,而布朗运动就是最典型的随机过程。随机过程理论当然是现在概率论中一个最重要的方面。现在的金融更频繁地运用随机过程理论来研究一些随机问题,设计出来许多所谓的衍生的金融产品。衍生的金融产品目前在国内还没有,但是美国在上世纪70年代就开始交易了。这不是具体的交易股票,而是将股票的指数、期货或期权进行交易,即交易你的合同。一个合同本身是一张白纸,是你可以购买这个股票的凭据。那么这个合同值多少钱就是数学金融中最重要的问题。对于一个合同、合约、购买权利,你应该如何定价?买一张桌子、椅子你可以定价,可是买一个合同如何定价就要用很多的概率论知识,特别是现在概率论中最新颖的部分----- 随机数学。

另外一个例子是我们常常提到的CT,它现在已经很普及了。CT是透视的一种,它通过每一段切点来合成出一个整体的图像,这是一个很难的数学问题,可是这个数学问题早在1917年就被一个数学家解决了。CT技术实际上是X光技术,他可以把你体内的立体信息检查出来,所以这种检测手段在医学上很重要。现在除了X光技术以外,还有很多很多新的手段,如核磁共振、正电子扫描等等各种各样新的检测手段,这些技术都以数学为基础。通过上面的例子可以说明,数学是一个很开放的领域,它总在不断的进步,而且这种不断的进步形成了一种非常丰富的资源,在某一个适当的时候,就可能从中发掘出很重要的东西。这说明数学走在科学技术发展的前沿。

二、数学有什么用处

对于那些不是真正研究数学的一般人来说,数学到底有什么用处?一方面,我们应当设法利用整个数学资源,在一定向导的带领下到数学领域去转一转,不必知道细节,只要知道数学的大致内容就行了。另一方面,通过数学可以使我们的思想方法有一个进步。例如在日常生活中,如果能运用数学思想方法,就可以向上台阶一样,每往前迈一步就会有许多收获,有时可以避免上当受骗。今年暑假我在兰州,孩子她小舅经常买彩票,他问我能不能想办法知道下次彩票的中奖号码。我的回答是:假如我知道这个号码,我自己就买了,就不告诉你了。所以,懂得数学的人或者说数学家不可能通过想买彩票这样的事情发财。实际上,数学家知道的是一个总体现象,而一般人只关心她自己的个别现象,这两点是非常不同的。彩票太复杂,就好比掷骰子。概率论来自赌博,虽然出身不好,但它却成为很重要的科学。概率论考虑的是所有可能的情形,并不是只考虑赢得情形,这两点是完全不同的。因此概率论所能告诉你的是:掷一个骰子,掷出一点、两点、三点、四点、五点或六点,你不是掷成这个点就是掷成那个点,假如这个骰子是均匀的,那么你掷出每一点的概率都是六分之一,这是一个很简单的概率问题。假定每一个彩票都处于一种等可能性的状态,那这些彩球就完全是决定性的。但事实上,彩票严格地说不是什么概率,因为彩票在发行的时候事先已经把一切都做好了。你去买彩票的时候,中奖机会是多少,也有个客观概率,你可以去算一下。但是,发行彩票的人事先把这笔帐早已经算清楚了,因为彩票就那么多,里面有多少张头等奖、一等奖、二等奖、三等奖等他心里很有数。所以发行彩票的人肯定赚钱,没有赔钱的可能性,最多的就是彩票没有卖出去。但是,如果假定彩票是基本均匀的,那就成为等可能性的。在这种等可能性的情况下,我们可以容易地计算出概率大约是八百多万分之一,这是一个非常小的可能性。有人说,我花了8万怎么也没有中奖?花8万才是百分之零点五的概率,想要必中的话就得花1600万买下所有的号码,数学家只能告诉你这个。

另外一个很有意思的问题是,假设我有一个号码是1234567,这个号码看起来不大可能摇出来,实际上,如果按假定的等可能原理,这个1234567和2441516或别的号码的概率是完全一样的。根据这个原理,你可以设一个号,每次都买这个号,按理说到了一定的时候你就会碰到这个号。但并不是说你第一个回合就能碰到,而是经过800万次后,你就能等到这个概率论中的一个随机过程。所以数学家只能告诉你这个或那个可能性有多大,而不能告诉你一个中奖号码。因为这只是汪洋大海中的一种,这就是数学家的思想方法。

再说一个例子。从前一个阿拉伯的国王有一个宰相,这个宰相立了大功,国王问他需要什么赏赐。宰相说,你给我一个棋盘(8×8的国际象棋棋盘),在第一个格子里放一粒米,在第二个格子里放两粒米,在第三个格子里放四粒米,在第四个格子里放八粒米,每一个格子里的米粒数是前一个格子米粒数的二倍,那么第五个格子里就放了十六粒米,如此放下去,到了最后一个格子当然就是2的63次方粒米。国王说那简单,我答应你这个条件。事实上,这棋盘上的粒米就是把这个国家的所有粮食都放进去也不够,因为这是一个指数增长问题。通过计算这些米立刻把地球表面覆盖3厘米厚,国王当然做不到。而传销的道理和给棋盘中放米的道理完全一样。为方便说明,假设一个人发展10个人,那第一个人是开始做传销的人,是10的零次方,一个人发展10 个人就是10 的一次方,可10个人再发展10 个人就是10 的二次方,当发展到10 的五层就是10 的5次方——10万人,10 的6次方就是100万人。这样要在一个局限的范围内,到了四五层就无法传下去,因为按照指数增长到一定程度就没有再多的人让你去传了。假如到了第8层那就是一亿人,这根本不可能实现。指数增长和一个一个增长不一样,一个一个增长是等差级数,而指数增长是如此快,以至于你不可想象。这就是为什么好多人传销上当受骗的原因。因为到了一定的级就无法传下去,只能往上传,往上传人家又不干,那你就只能往下传,可是已经没人可传了。既然利润都给了上头这个人,其他人就只能倾家荡产。这些在日常生活中碰到的实例并不要求你学什么数学理论,只要有一个数学的思维方式就行了。

还有,我们现在买房买车时搞的按揭。按揭贷款到底合算不合算?这是一个消费行为的准则问题,人和人之间的差别会很大。但是说到底就是一个观念。对任何人来说,钱都是有时间价值的,不同时间钱的价值不同。比如买房子,年轻人买房子可能没有什么顾虑,因为他可以贷款30年,负担比较轻,而且年轻人的志向很大,想将来工资会越涨越高,可能赚大钱,所以慢慢还,心理上没有什么压力。但是年纪比较大了,到了四五十岁,甚至接近六十岁了,要贷款买房子,一方面银行不贷给你了,银行贷款的年龄不超过65岁,65岁以后就不能贷给你了;另一方面,你的年纪大了,自己也得考虑马上就退休了,退休后工资就固定了,那你就没办法还贷款。所以每个人在考虑问题时都会考虑到时间对自己的影响。也就是说,你今天的钱和将来的钱进行比较,每个人都会考虑它的价值——时间价值。虽然一般人不会像我们学数学的人拿计算机好好算算,只是在心里估计一下,但实际上每个人在算的时候都把将来的钱和现在的钱进行比较。比如有些很有钱的人,像有些老总们,他们即使有钱,也愿意去贷款。当他买房子的时候,明明他的存款一次就可以把房子买下来,但他也愿意搞商业贷款。因为他有一个企业需要投资,虽然他可以向银行去借钱,但银行的那个贷款利率比住房贷款利率高,这个当然不合算。

数学最重要的一点就是它是精密科学。这要求必须清楚概念的含义。在广告中最常见的是,本产品高科技含量百分之五十或百分之五十五,更有甚者给你个带小数点的百分之五十五点九八。可是,首先什么叫高科技含量不知道;也不知道百分之五十五点九八以外的部分叫什么,是低科技含量吗?这种说法就是迎合那种一听高科技就眼睛一亮的人。此外,对数字特别迷信也不可取。比如14.56好像精确的不得了,那一定非常可靠,这完全是谎话。有许多时候只相信数字还不如没有数字,因为有许多时候有这个数和没有这个数效果完全一样,根本就没有用,那只是用来欺骗大众的手段。还有一个常见的说法,以前是讲祖传秘方,药到病除,一针就灵诸如此类的话,现在当然比较高级了,用到数学的概念:治愈率、有效率是百分之五十七点八、百分之九十八点九八。这个数字是怎么来的你可能不知道,如果就两个人,一个治好了一个治坏了,就说有效率是百分之五十,这样行吗?况且治好了的人是靠这个药治好的还是自然痊愈的,你都不知道,你就可能听信这个百分之五十!或者说这药对两个人都有效,有效率就成了百分之一百。其实,这个所谓的百分数要看取样在什么集合内,并且统计上还有很多规则,不是随便说就行了。所以在这些地方不要精确的语言,数学家会思考这句话到底是什么意思,这个数字是怎么来的,而这正是数学家平时训练出来的思想方法。

当然,平时有一些事就需要我们去思考。例如气象台预报中播报下雨的概率是百分之四十、百分之六十、百分之八十,这是说有百分之四十的地方下雨,或者有百分之四十的时间下雨?所以这个下雨概率要想一想。它的意思无非是:百分之五十以下的概率下雨,你出门可以不带雨伞,可百分之八九十要下雨的话,你出门就要带把雨伞,目的是提醒你有没有东西需要遮盖,或不要洗衣服等。这实际上是给我们一个参照的数字,因为有很多原因导致这个数字不太精确,所以只能作为一个参考。在这些问题上,你对于数学要有一个概念,要在每一种情况下进行思考,这是学数学的一个思想。不要看见数就轻信,就以它来指导你的生活,这样做出的决策会是你的生活出现问题。

三、数学意识和数学思维

这样说来,我们怎样通过数学来上一个台阶呢?首先数学帮助你在思维上迈上一个台阶,这个台阶主要有四个方面的要求:第一,要有数量的观念。但这里要避免一个误区,你首先要能确定这个数能反映本质特征,因为有许多数无法进行衡量。像有的人说的道德值多少钱一斤?道德这种事物很难用数来衡量,所以有许多事物是不能用数来衡量的。第二,用数衡量要适可而止。过于准确或小数点后面许多位对于指导生活没有任何意义。例如下雨的概率是百分之三十九点五三,这小数点后面的数字根本没有意义。又比如现在比较预测的经济增长率,今年经济增长率原预测是增长百分之二点一,实际是百分之二点零,或是百分之一点九,两位数就足够了,况且这两位数还不准确,那后面的数字有什么意义?这说明对数量要有一个正确的观念:数学上的每一个想法是如何的出来的,都应该有一个确切的含义。第三,要有一个合理的思维,特别是合乎逻辑的思维。第四,要有一个简便的方法。数学家总是考虑如何把一个复杂的东西整理成一个简单化的东西,这并不是为简单而简单,而是因为人脑要记住的东西实在太多了,不能把一切都记住,所以需要把比较复杂的东西变成简单的东西。大宝广告词说得很有意思:把复杂的东西变成简单的东西——贡献,把简单的东西变成复杂的东西——累得慌。确实,人类现在生活在一个很复杂的世界,要知道有些事是不可能的,但你应该有一个简化事物的方法,在数学中有很多这样的方法。例如我们常说的优化,告诉你应该如何进行投资,就是不要把所有的鸡蛋都放在同一个篮子里——这就是优化。比如你家里的钱,多少存进银行,多少用于投资,投资如何分配等。九月三号早晨,我在中央一台“走进科学”栏目看了一个内容,很受教育。上海的一个出租车司机藏先生每月都能挣八千元以上的工资,而其他的司机最多就是三千来元工资,他被人们称为“神奇的哥”。好多人都不相信,以为他在吹牛!中央电视台记者进行跟踪采访,发现确实是这样。事实上,他在十四年的出租车生涯中,肯动脑子,肯学数学,应用了对策论、概率论、优化论中许多知识。比如早晨出车时间、行车路线、吃饭地点、拉客地点等都提前做了预算。优化的方法在数学上都是能证明的,在概率论或信息论中都有应用。这种简化的方法我们从小学一年级就开始学,一加二,二加三,一直加到一百,如果你一个一个的傻加就是复杂的方法,高斯就能很简单的算出这个结果。想要处理不简单的问题,就要用一个比较简单的方法。但是数学家所提出的数学的简单的方法和我们平时说的简单的方法不一样,数学家把事物分成两个部分,其中之一是繁琐的部分:事物做起来非常繁琐,但很常规,那你就可以机械化的去做。这正是我国数学大师吴文俊先生说的,数学中有很多东西可以机械化,凡是机械化的东西,数学就认为你已知了,就该把你的主要智慧放在最核心、最困难的问题上。凡是已知的,数学家就不再重复了。比如要知道今天下午听报告的人多还是报告厅的座位多,一般人用数数的方法,而数学家就用对应的方法。这个方法很重要,用它很容易比较两个无穷集合元素的多少。

所以,在日常生活中,我们无论做什么事情,在思想方法上向前迈进一步,你就会感到数学还挺有意思的。不一定去念大学,念大学不见得有效。学数学首先要学习他的思想方法,其次是通过交谈或各种情况来利用这个资源,因为现在有许多资源确实存在,只是我们不知道,不会用而已。

我的报告就到这里。谢谢大家!

2006年9月

‘叁’ 今年高考数学题这么难,北大数学天才“韦神”能答满分吗

对学渣来说,难不难没有太大的区别,反正都答不上来;对于学霸来说,题目难是难了点,但也就是要多费点心思,原本能提前20分钟做完的题目现在得掐着点完成。

对于数学成绩处于中间层次的那批考生来说就难过了,他们的成绩原本在120至135分之间,卷子中的难题做不出来但常规题的分数能拿到,今年发现难题数量增加了,做起来特别费劲。对于北大的“韦神”来说,高考数学简直就是小菜一碟,但是得满分却不一定。

当然,如果给韦东奕一些复习时间,比如一个月,让他稍微接触一下高考数学的解题技巧,我相信他是能拿到满分的,哪怕数学卷出得再难些也可以。

‘肆’ 高中数学怎么在1年学完

只要计划好,先熟悉书本逻辑,主要是数学概念;之后通过习题串联各部分;最后通过历年高考试题巩固所学,一年完全有可能歼橡。关键有二:一是科学制定学习计划;二是用坚持确保计划执埋改信行到位。因为,这是一个比其他按部就班同学来得弯轮更有挑战的学法,孙正义曾经做到过。

‘伍’ 帮帮我吧!如何在一年之内学好全部高中数学(我高三)

我是高中数学教师,给你个能学好数学的建议:
1、能认清自己在数学中的劣势这很好,但面对高考的你如果不去学数学就是你的不对了;
2、在第一轮复习中不要贪多求全,不要想一口吃个胖子,只要抓住老师给你们讲历笑差肢皮解的练习册就好,只需这一本就够了,全当自己没学过,升尺一切从零做起,老师讲的题提前先问同学,老师讲过的题要分门别类的做好记号:没讲就会的,没讲不会的,讲了学会的,讲了不会的。抓住问题的重点有效的听课,课后及时补缺;
3、每次老师给大家考的试卷一定不要留问题,必须每道题都要弄会,考试卷往往知识点相对比较全面,会做的题全当他没出过,不会做的题标上记号,暂时弄会了而后又忘的话就拿卷子隔几天就要看看,抓住问题的关键条件,整理解题思路,有必要的话还应该动动笔;
4、要坚信每一道数学题都是你力所能及的,只有给数学付出时间你就一定会有收获,你想数学分值最少的一道还要5分的;
5、数学学习要有效,不要题海,考试前看老师平时讲过的题,然后把相近的题进行比较找到异同点,你将成为数学巧学的高手。
由于时间限制只能说这么多了。。。。。。
但愿这些对你有帮助,并祝你考得好成绩。

‘陆’ 如何在年限后面统一自动加2年时间

点击加入即可,
1、首先在excel表格中输入一组时间格式的数据,需要在该组数据中添加三年。
2、在B1单元格中输入函数公式:=DATE(YEAR(A1)+3,MONTH(A1),DAY(A1)),意思是在年份的位置增加三年,月份和日期保持不变。
3、点击回车,即可将函数公式生成计算结果,可以看到已经在原本的高肢缺日期基础上增加了三年。4、饥宽然后将B1单元格中的公式向下填充,即可批量将A列中的日期增戚辩加三年

‘柒’ 数学:1200元,每年在前一年基础上增加5%,20年后是多少

这个应该是第早备一年是1200元 ,那氏睁么第二年就是1200(1+5%),第三年是1200(1+5%)²,...二十陆核毁年后就是1200(1+5%)^20

‘捌’ 年在数学里用什么字母表示

可以用小写字母y表示,岩行这是年的英辩枣孙文year的首字母。
同理,月为m(month),日为d(day),小时为携链h(hour),分钟为min(minute),秒为s(second)。

‘玖’ 数学中读作怎么写

读作是指:数字要写大写的,如数字大写一、二、三、四、五、六、七、八、九、十。例如:35,读作:三十五。写作:是指要用小写的阿拉伯数字来写,如数字1、2、3、4、5、6、扒升型7、8、9。例如笑裂:二十春猜五,写作:25。十进制读数法的法则如下:1、四位以内的数可以顺着位次,从最高位读起,例如1987读作一千九百八十七。2、四位以上的数,先从右向左四位分级,然后从高级起,顺次读出各级里的数和它们的级名。3、一个数末尾有0,不论有几个都可不读,分级后任一级末尾有零,也可不读,在需要读出时,不论有几个0,均只读一个零,中间有0的,也不论连续有几个0,需要读出时只读一个零。

‘拾’ 急!数学在生活中的应用

数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(引自《古今数学思想》第一册P1——作者注)。“在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科”(引自《古今数学思想》第一册P1——作者注)登上了人类发展史的大舞台。
如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。由于这些内容所涉及的高中数学知识不是很多,在此就不赘述了。
由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。
下面,我就紧扣高中数学学习的实际,从函数、不等式、数列、立体几何和解析几何等五方面,简明扼要地谈一下数学知识在生产生活中的应用。
http://www.yrsx.com/Article_View.asp?id=20
第一部分 函数的应用
我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关系,因此代数中的函数知识是与生产实践及生活实际密切相关的。这里重点讲前两类函数的应用。
一元一次函数的应用
一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。
例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。
下面,我就为大家讲述我亲身经历的一件事。
随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。
我在纸上写道:
设某顾客买茶杯x只,付款y元,(x>3且x∈N),则
用第一种方法付款y1=4×20+(x-4)×5=5x+60;
用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.
接着比较y1y2的相对大小.
设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.
然后便要进行讨论:
当d>0时,0.5x-12>0,即x>24;
当d=0时,x=24;
当d<0时,x<24.
综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.
可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!
http://www.yrsx.com/Article_View.asp?ID=20&page=1
二、一元二次函数的应用
在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时,
其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。

三、三角函数的应用
三角函数的应用极其广泛,这里仅讲最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。
在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。
如右图,令C=90 ,B=α ,平地距为d,山坡距为r,则secα=secB =AB/CB=r/d. ∴r=secα×d这个问题至此便迎刃而解了。
http://www.yrsx.com/Article_View.asp?ID=20&page=2
第二部分 不等式的应用
日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两类不等式的应用与其对应函数及方程的应用如出一辙,而平均值不等式在生产生活中起到了不容忽视的作用。下面,我主要谈一下均值不等式和均值定理的应用。
在生产和建设中,许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。平均值不等式知识在日常生活中的应用,笔者虽未亲身经历,但从电视、报纸等新闻媒体及我们所做的应用题中不难发现,均值不等式和极值定理通常可有如下几方面的极其重要的应用:(表后重点分析“包装罐设计”问题)
实践活动 已知条件 最优方案 解决办法
设计花坛绿地 周长或斜边 面积最大 极值定理一
经营成本 各项费用单价及销售量 成本最低 函数、极值定理二
车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出
速度、各项费用及相应 最低成本,再由此
比例关系 计算出最低票价
(票价=最低票价+ +平均利润)
包装罐设计 (见表后) (见表后) (见表后)

包装罐设计问题
1、“白猫”洗衣粉桶
“白猫”洗衣粉桶的形状是等边圆柱(如右图所示),
若容积一定且底面与侧面厚度一样,问高与底面半径是
什么关系时用料最省(即表面积最小)?
分析:容积一定=>лr h=V(定值)
=>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2)
≥2л3 (r h) /4 =3 2лV (当且仅当r =rh/2=>h=2r时取等号),
∴应设计为h=d的等边圆柱体.
2、“易拉罐”问题
圆柱体上下第半径为R,高为h,若体积为定值V,且上下底
厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最
省(即表面积最小)?
分析:应用均值定理,同理可得h=2d(计算过程请读者自己
写出,本文从略)∴应设计为h=2d的圆柱体.

事实上,不等式特别是均值不等式在生产实践中的应用远不止这些,在这里就不一一列举了。
http://www.yrsx.com/Article_View.asp?ID=20&page=3
第三部分 数列的应用
在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。
本文重点分析等差数列、等比数列在实际生活和经济活动中的应用。
(一)按揭货款中的数列问题
随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。
众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。
若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
......
an+1=an(1+p)-a,.........................(*)
将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p.
由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。

(二)有关数列的其他应用问题
数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。读者朋友一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。下面请看北京市西城区2003年抽样测试-高二数学试卷中的一道应用问题。

http://www.yrsx.com/Article_View.asp?ID=20&page=4
http://www.yrsx.com/Article_View.asp?ID=20&page=5

阅读全文

与如何在数学后面加年相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:735
乙酸乙酯化学式怎么算 浏览:1398
沈阳初中的数学是什么版本的 浏览:1344
华为手机家人共享如何查看地理位置 浏览:1037
一氧化碳还原氧化铝化学方程式怎么配平 浏览:878
数学c什么意思是什么意思是什么 浏览:1402
中考初中地理如何补 浏览:1291
360浏览器历史在哪里下载迅雷下载 浏览:694
数学奥数卡怎么办 浏览:1381
如何回答地理是什么 浏览:1016
win7如何删除电脑文件浏览历史 浏览:1049
大学物理实验干什么用的到 浏览:1479
二年级上册数学框框怎么填 浏览:1693
西安瑞禧生物科技有限公司怎么样 浏览:952
武大的分析化学怎么样 浏览:1242
ige电化学发光偏高怎么办 浏览:1331
学而思初中英语和语文怎么样 浏览:1643
下列哪个水飞蓟素化学结构 浏览:1419
化学理学哪些专业好 浏览:1480
数学中的棱的意思是什么 浏览:1051