1. 解方程怎么找等量关系
解方程找等量关系的方法如下:
一、抓住数学术语找等量关系。应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示。在解题时可抓住这些术铅高语去找等量关系,按叙述顺序来列方程轿伏。
二、根据常用的计算公式找等量关系。常用的计算公式有:长方形面积=长×宽;正方形的面试=边长×边长;三角形的面积=底×高/2。在解题时可以根据这些常见的计算公式找等量关系。
“等量关系”特指数量间的对等关系,是数量关系中的一种。数学题目中常含有多种等量关系,如果要求用方闭激携程解答时,就需找出题中的对等关系。
2. 初一数学解方程怎么找出等量关系
解一元一次方程的一般方法:
1、去分母
2、去括号
3、移项,
4、合并同类项
5、系数化为1
6、检验
例如解方程(3x-7)÷5=16
解:(3x-7)÷5=16
3x-7=16×5
3x-7=80
3x=87
x=29
检验:
左边=(3×29-7)÷5=(87-7)÷5=80÷5=16
右边=16
左边=右边
所以x=29是原方程的解
1、抓住数学术语找等量关系
应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。
例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,搏好团四年级植树多少棵?”这道题的关键词是“比基橘……少”,从这里可以找出这样的等量关系:四年级植树袜辩棵数的2倍减去4等于五年级植树的棵数,由此列出方程2 -4=50.
2、根据常见的数量关系找等量关系
常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系。
例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量=总价”的数量关系,可以列出方程36 =216.
3. 怎么找等量关系
1、根据常用的计算公式找出等效关系:
常用的数量关系:长方形面积=长×宽;可以根据计算公式找等量关系.例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程4 =19。
2、掌握数学术语以找到等效关系:
常见的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。
3、根据常见的数量关系找等量关系:
常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系。
4、借助线段图确定等量关系。
线段图能使抽象的数量关系具体化,使隐蔽的数量关系明朗化。对于较复杂的题目,同学们可借助线段图找等量关系。
5、根据文字关系式找等量关系。
(3)初一数学解方程应用题如何找等量关系扩展阅读:
常见的等量关系:
1、减法等量关系:
(1)被减数=减数+差
(2)差=被减数-减数
(3)减数=被减数-差
2、加法等量关系:
(1)加数=和-另一个加数
(2)和=加数+加数
3、乘法等量关系:
(1)积=因数×因数
(2)因数=积÷另一个因数
(3)单价×数量=总价
(4)速度×时间=路程
(5)工作效率×工作时间=工作总量
4. 如何找等量关系的常用方法
1.基本等量关系法。
同学们曾经学习过许多等量关系,例如速度×时间=路程、单价×数量=总价等。可通过分析提示条件与等量关系列出方程。
例1:某学校购得足球10个,每只足球为5元,总共花了多少钱?
解:5×10=50(元)
答:总共花了50元。
2.基本计算公式法。
同学们在学习几何初步知识时,曾接触过不少计算公式,这些公式就是一种等量关系,可根据这些公式列出方程。
例2:长方形的周长为50米,其中长为15米,宽为多少?
解:长方形周长=(长+宽)×2,设其宽为x。
则得50=(15+x)×2
x=10
答:宽为10米。
5. 初一方程应用题,怎么样找等式
(1)抓住数学术语找等量关系
应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.
(2)根据常见的数量关系找等量关系
常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……
(3)根据常用的计算公式找等量关系
常用的计算公式有:长方形面积=长×宽;
(4)根据文字关羡首系式找等量关系
例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?”此题用文字表示等量关系是:
一班+二班+三班=总数
一班+二班=总数-三班
一班+三班=总数-二班
二班+三班=总数-一班
(5)根据图形找等罩派悔量关系
例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图.
从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数.根据这个关系式,可列出方程70×3+2
=400.
常见等量物正关系式:
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者
和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或
小数+差=大数)
6. 找等量关系的八种方法
找等量关系列方程的八种方法
一、从关键句入手找等量关系。
关键句是应用题反映数量关系的核心。解题前~要认真审题~从题中找出关键句~再把关键句用语言文字等式表示出来~从而列出方程~如:某班有女生38人~比男生的2倍多4人~男生有多少人,
把关键句“比男生人数的2倍多4人”替换成女生人数,男生人数×2,4或女生人数,4,男生人数×2~可分别得到方程2x+4=38~2x=38-4。
二、借助基本等量关系列方程
学习列方程应用题之前~要熟记“速度×时间,路程~单价×数量,总价~工作效率×工作时间,工作量~总数量?总份数,平均数”等基本数量关系。通过这些基本数量关系分析三者的关系而列出方程。
三、根据计算公式列方程:
我们在几何初步知识的学习中掌握了一些计算公式~这些公式就是一种等量关系。如:平行四边形面积、三角形面积、梯形面积、圆面积公式。
四、画线段图找等量关系:
一幅规范的线段图清晰直观地再现题目的数量关系~可以从中找出等量关系。
五、利用计算性质找等量关系:
在四则计算中~我们已经学习了运算定律性质~这些定律性质实质上体现了一种等量关系~根据它可以列出方程~如某数除以9商7余5~它除以10商6余几,
根据“被除数,商×除数,余数”得方程:10×6+x=9×7+5
六、根据几何图形特征找等量关系。
特殊的几何形体都是有某些特征~根据这些特征能寻到等量关系从而列出方程~如:一个等腰三角形顶角有40度~一个底角是多少度,
等腰三角形具有两底角相等的特征~从而得到等量关系:一个底角的度数×2,顶角的度数,180度~可得方程:2x+40=180。 七、从题目叙述的事理中找等量关系。
不少顺叙题目~可边读题目边将它提炼成文字叙述等式~根据题意列出方程~如~商店原有74千克水果糖~又运来25千克~卖了一天以后还剩下63千克。这一天卖了多少千克,
边读边提炼为:原有的,运来的,卖了的,剩下的~得方程:74,25,,63
八、根据“同一量”找等量关系
有的题目~尽管其他情节发生了变化~但叙述前后都指向某“同一量”~这“同一量”前后相等~如~某车从甲地到乙地计划每小时行35千米~6小时到达~实际提前2小时到达~每小时要行多少千米,
题中的时间~速度虽然发生了变化~但计划与实际行驶的路程都是甲乙两地相距的路程~即计划行驶的路程,实际行驶的路程~因而可得方程:(6-2)x=35×6.
7. 初中方程题找等量关系的技巧
<正> 找等量关系建立方程是列方凳碰程解应用题最关键的一步.通常有以下四种方法: 一、数量关系法数量关系法就是把题目中的数量关系用代数式直接表示出来,从而建立起方程.例如: 例1 在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处人数的2倍,应调往甲、乙两处各多少人?
【作者单位】:山东省昌邑市北孟第二中学 261318 (曹术环);山东省昌邑市北孟第二中学 261318(韩月芹)
【分类号】:G634.6
【DOI】:cnki:SCN:23-1186.0.2004-03-006
【正文快照】:
找等量关系建立方程是列方程解应用题最关键的一步.通常有以下四种方法: 一、数量关系法 数量关系法就是把题目中的数量关系用代数式直清粗巧接表示出来,从而答键建立起方程.例如: 例l在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处人数的2倍,应调往甲、乙两处各多少人? 分析:这个问题的相等的数量关系可以表示为: 调人后甲处人数二Zx调人后乙处人数. 若设调往甲处x人,则调人后甲处人数为(27+x);乙处人数为〔19+(20一x)”,于是可建立方程: 27+x=2[19+(20一x)](解略). 点拨:运用这种方法的关键是找准题目中的反应…