导航:首页 > 数字科学 > 小学数学中的概念有哪些方面

小学数学中的概念有哪些方面

发布时间:2023-04-01 05:36:08

❶ 小学数学概念教学中涉及哪些概念

一、算术方面

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

数量关系计算公式方面

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

有余数的除法: 被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、 1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。 1亩=666.666平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化发。

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)

17、互质数: 公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)

21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3. 141592654

33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

34、什么叫代数? 代数就是用字母代替数。

35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c

一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数

2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3 速度×时间=路程路程÷速度=时间 路程÷时间=速度

4 单价×数量=总价总价÷单价=数量 总价÷数量=单价

5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6 加数+加数=和和-一个加数=另一个加数

7 被减数-减数=差被减数-差=减数 差+减数=被减数

8 因数×因数=积积÷一个因数=另一个因数

9 被除数÷除数=商被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1 正方形 C周长 S面积 a边长

周长=边长×4 C=4a

面积=边长×边长 S=a×a

2 正方体 V:体积 a:棱长

表面积=棱长×棱长×6 S表=a×a×6

❷ 小学数学有哪些概念小学数学怎么学

小学六年级数学概念

一、分数乘法

1、 分数乘整数,用分数的分子与整数相乘的积作分子,分母不变。

2、 分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

3、 求一个数的几分之几是多少用乘法计算(一个数×=具体量)。能约分的先约分再乘。

二、分数除法

1、 乘积是1的两个数 互为倒数。

2、分数除以整数(0除外),等于分数乘这个数的倒数。

3、整数除老友以分数,就是整数乘这个数的倒数。

4、甲数除以乙数(0除外),等于甲数乘乙数的倒数。

5、单位“1”(一个数)×=具体量 具体量÷单位“物做1”(一个数)=【已知一个数的几分之几是多少,求这个数】 单位“1”(一个数)=具体量÷

三、圆

1、 画圆时固定的一点是圆心,圆心一般用字母o表示。

2、 圆上任意一点到圆心的线段是半径,半径一般用字母r表示。通过圆心且两端都在圆上的线段是直径,直径一般用字母d表示。r= d=2 r

3、 圆的大小和半径有关,圆的位置和圆心有关。

4、 圆的周长总是直径的3倍多一些,圆的周长除以直径的商是一个固定的数,把它叫做圆周率,用字母∏(读pài)表示。计算时通常取它的近似值∏=3.14。

5、 周长C=πd=2πr d= =C÷π r= =C÷2π=C÷π÷2= C÷2π

6、 圆面罩含衡积S=πr2 =π()2

7、 扇形面积=大圆面积-小圆面积=πr2大-πr2小=π(r2大-r小2)

8、 由圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。在同一个圆内,扇形型的大小与这个扇形的.圆心角的大小有关。

四、比和按比例分配

1、 两个数相除又叫做这两个数的比。

2、 比和除法、分数的关系

比和除法、分数的区别:

比 前 项 ∶ (比 号) 后项 比值是—种 相除关系。

除法被除数 ÷ (除 号) 除数 商是一种 运算。

分 数 分子 -- (分数线) 分母 分数值是一 种数。

3、比的后项和除数、分母一样不能为0。

4、比值可以用分数表示,也可以用小数或整数表示。

5、比的前项和后项同时乘或除以一个相同的数(0除外),比值不变,这叫做比的基本性质。

6、把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。

❸ 小学数学概念知识点总结

期中考试马上开始,以前学过的知识是不是都还记得呢?小学数学需要记住的知识点还是比较多的,看到这些知识点,很多孩子都觉得枯燥,不愿意用心去记。如果我们把一种新的、有趣的 记忆 方法 教给孩子,孩子也会变得有兴趣,因为兴趣是最好的老师。下面是我为大家整理的关于小学数学概念知识点 总结 ,希望对您有所帮助。欢迎大家阅读参考学习!

小学数学概念

年月日

一三五七八十腊(12月),

三十一天永不差;

四六九冬(11月)三十日;

平年二月二十八,

闰年二月把一加。

100以内的质数口诀

2、3、5、7和11,

13后面是17,

19、23、29,(十九、二三、二十九)

31、37、41,(三一、三七、四十一)

43、47、53,(四三、四七、五十三)

59、61、67,(五九、六一、六十七)

71、73、79,(七 一、七三、七十九)

83、89、97。(八三、八九、九十七)

多位数读法歌

读数要从高位起,哪位是几就读几,

每级末尾若有零,不必读出记心里,

其他数位连续零,只读一个就可以,

万级末尾加读万,亿级末尾加读亿。

多位数写法歌

写数要从高位起,哪位是几就写几,

哪一位上没单位,用0占位要牢记。

多位数大小比较歌

位数不同比大小,位数多的大,位数少的小。

位数相同比在小,高位比起就知道。

运算顺序歌

打竹板,响连天,各位同学听我言,

今天不把别的表,单把四则运算聊一聊,

混合试题要计算,明确顺序是关键。

同级运算最好办,从左到右依次算,

两级运算都出现,先算乘除后加减。

遇到括号怎么办,小括号里算在先,

中括号里后边算,次序千万不能乱,

每算一步都检查,又对又快喜心间。

"除"的意义

看到"除",

圈一圈,

"除"字前面是除数,

"除"字后面被除数,

位置交换别忘了。

商中间或末尾有0的除法

我是0,本事大,

除法运算显神通。

不够商1我来补,

有了空位我就坐。

别人要想把我除,

常胜将军总是我。

认识钟表

跑的最快是秒针,个儿高高,身材好;

跑的最慢是时针,个儿短短,身材胖。

不高不矮是分针,匀速跑步作用大。

量角

中心对顶点,

0线对一边,

一边读刻度,

内外要分辨。

计量单位间的换算

大化小,用乘好。

小化大,除不差。

大月、小月的记忆

七前单月大,

八后双月大

我是1厘米

1厘米,很淘气,仔细找,才见你,

指甲盖1厘米,伸出手指比一比,

长短和我差不多,大约就是一厘米。

100个我是1米,我是米的小兄弟,

物体长了别用我,要不一定累死你。

大于号、小于号的用法

大于号、小于号,开口朝着大数笑。

小学数学知识点

一、20以内进位加法

看大数,分小数,凑整十,加零头。

(掌握“凑十法”,提倡“递推法”。)

二、20以内退位减法

20以内退位减,口算方法和简单。

十位退一,个加补,又准又快写得数。

三、加法意义,竖式计算

两数合并用加法,加的结果叫做和。

数位对其从右起,逢十进一别忘记。

四、减法的意义竖式计算

从大去小用减法,减的结果叫做差。

数位对齐从右起,不够减时前位拿。

五、两位数乘法

两位数乘法并不难,计算过程有三点:

乘数个位要先算,再用十位乘一遍,

乘积末位是关键,要和十位来对端;

两次乘积相加完,层层计算记心间

六、两位数除法

除数两位看两位,两位不够除三位。

除到那位商那位,余数要比除数小,

然后再除下一位,试商方法要灵活,

掌握“四舍五入”法,还有“同商比较法”,

了解“折半定商法”,不足除数商九、八。(包括:同头、高位少1)

七、混合运算

拿到式题认真看,先算乘除后加碱。

遇到括号要先算,运用规律要改变。

一些数据要记牢,技能技巧掌握好。

八、加、减法速算

加减法速算你莫愁,拿到算式看清楚,

接近整百凑整数,如下处理无谬误。

加法不足减补数,超余零头加在后。

减法不足加补数,超余零头减在后。

九、多位数读法

读书方法很容易,首先四位一分级。

要从最高位读起,几千几百几十几。

级的单位读亿万,末尾有零都不读

(级末尾0不读,整个数末尾0不读)

中间夹零读一个,汉字表达没参和。

注读零的:

1、万级个级首位有零

2、整个万级是零

3、上级末尾下级首位都有0

4、每级中间有0

十、小数加减法

小数加减计算题,以点对准好对齐。

算法如同算整数,算毕把点往下移。

十一、小数乘法

小数乘小数,法则同整数。

定积小数位,因数共同凑。

十二、除数是小数的除法

除数的小数点一划,(去掉小数点)

被除数的小数点搬家,向右搬家搬几位,

除数的小数位数决定它。

十三、质数歌

一位质数2、3、5和7,

两位1、3、7、9前加1,

4后3,7前有9,7后1,

3、4、6后加7、1,

2、5、7、8后添9、3,

二十五个质数要记全。

十四、分数乘除法

分数乘法易学懂,分子分母分别乘。算式意义要搞清,上下能约更轻松。分数除法方法妙,原来除号变乘号。除数子母打颠倒,进行计算离不了。

十五、约分

约分、约分,相乘约净,省时省力。从上往下,从左到右,弄清数据,一数不漏。遇到小数,去点为整,位数不够,用“零”来补。

十六、互质数的判断

分数比化简,互质数两端。观察记五点:1和所有数;相邻两个数;两质必互质。大数是质数,两数定互质。小数是质数,大数不倍数。(是小数的)

十七、文字题

叙述形式有三种,读法意义和名称。解题方法要记清,缩句化简一步算。标点词语把句断,分层布列莫迟延。列式方法有两种,可用算式和方程。

十八、比较关系应用题

(一)相差关系

1、多多少,少多少,都是大减小。

2、已知条件说比多,比前用加比后减。

3、已知条件说比少,比前用减比后加。

(二)倍数关系

1、倍在问题里用除。

2、倍在已知条件里,求是前用乘,求是后用除。

(三)求比几倍多(少)几的数

根据倍数分乘数,根据多少分加减。

算除先加减,算乘后加减。

十九、找单位“1”

单位“1“藏得巧,根据分率把你找。

“其中“的前站得好,”是、占、比“后坐得妙;

“问答式“能找到,补充说明要搞好。

百分数常遇到,不带“率“字有礼貌。

找出一对好朋友,然后确定乘除号。

找单位“1“的说明:

抓住含有不带单位名称的分数的“关键句“、“关键词”,进行剖析,这样就解决了不少学生对于分数应用题苦于不知“从何下手”进行分析数量关系。因此,使学生学会迅速找“关键句”、“关键词语”进行剖析数量关系,不仅能有利于掌握解答分数应用题的一般规律,而且也能培养学生的能力,发展学生的智力。先“找”后“析”是六年级学生普遍的学习规律,切记引导学生认真有序地进行分析。

分数应用题1、找 2、明 3、定 4、对应的解题思路。

二十、正反比例应用题

正比例,分三段,不变数量在中间,

前后归一分开列,然后等号来连接。

反比例分三段,不变数量在前面,

“如果”分开归总列,再用等号来连接。

相关 文章 :

1. 小学数学必备概念知识点顺口溜

2. 小学数学概念学习窍门

3. 二年级数学上册概念知识点整理

4. 做小学四年级数学上册知识点总结

5. 小学数学三年级人教版知识点汇总(含北师大版数学)

❹ 小学数学必知的概念有哪些

概念。
1,加法交换律:两数相加交换加数的位置,和不变。
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3,乘法交换律:两数相乘,交换因数的位置,积不变。
4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 0除以任何不是0的数都得0。
简便乘法:被乘数,乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7,什么叫等式 等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8,什么叫方程式 答:含有未知数的等式叫方程式。
9, 什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15,分数除以整数(0除外),等于分数乘以这个整数的倒数。
16,真分数:分子比分母小的分数叫做真分数。
17,假分数:分子比分母大或分子和分母相等的分数叫做假分数。假分数大于或等于1。
18,带分数:把假分数写成整数和真分数的形式,叫做带分数。
19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20,一个数除以分数,等于这个数乘以分数的倒数。
21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22,什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23,什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
24,比例的基本性质:在比例里,两外项之积等于两内项之积。
25,解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
26,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33,要学会把小数化成分数和把分数化成小数的化发。
34,最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个, 叫做最大公约数。)
35,互质数: 公约数只有1的两个数,叫做互质数。
36,最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37,通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
38,约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分。(约分用最大公约数)
39,最简分数:分子,分母是互质数的分数,叫做最简分数。
40,分数计算到最后,得数必须化成最简分数。
41,个位上是0,2,4,6,8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43,偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
44,质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45,合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
46,利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
47,利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
48,自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
49,循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3。 141414
50,不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3。 141592654
51,无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3。 141592654……
52,什么叫代数 代数就是用字母代替数。
53,什么叫代数式 用字母表示的式子叫做代数式。如:3x =ab+c

❺ 小学数学的概念是什么

小学数学是通过教材,教小朋友们关于数的认识,四则运算,图形和长度的计算公式,单位转换一系列的知识,为初中和日常生活的计算打下良好的数学基础。
荷兰教育家弗赖登诺尔认为:“数学来源于现实,也必须扎根于现实,并且应用于现实。”的确,现代数学要求我们用数学的眼光来观察世界,用数学的语言来阐述世界。
从小学生数学学习心理来看,学生的学习过程不是被动的吸收过程,而是一个以已有知识和经验为基础的重新建构的过程,因此,做中学,玩中学,将抽象的数学关系转化为学生生活中熟悉的事例,将使儿童学得更主动。从我们的教育目标来看,我们在传授知识的同时,更应注重培养学生的观察、分析和应用等综合能力。

❻ 小学数学概念有哪些

小学数学知识概念公式汇总

小学一年级 九九乘法口诀表。学会基础加减乘。
小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。

必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a×a

长方形的面积=长×宽 公式 S= a×b

平行四边形的面积=底×高 公式 S= a×h

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的体积=长×宽×高 公式:V=abh

长方体(或正方体)的体积=底面积×高 公式:V=abh

正方体的体积=棱长×棱长×棱长 公式:V=aaa

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

读懂理解会应用以下定义定理性质公式

一、算术方面

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

数量关系计算公式方面

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

有余数的除法: 被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、 1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。 1亩=666.666平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化发。

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)

17、互质数: 公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)

21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3. 141592654

33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

34、什么叫代数? 代数就是用字母代替数。

35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c

一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数

2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3 速度×时间=路程路程÷速度=时间 路程÷时间=速度

4 单价×数量=总价总价÷单价=数量 总价÷数量=单价

5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6 加数+加数=和和-一个加数=另一个加数

7 被减数-减数=差被减数-差=减数 差+减数=被减数

8 因数×因数=积积÷一个因数=另一个因数

9 被除数÷除数=商被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1 正方形 C周长 S面积 a边长

周长=边长×4 C=4a

面积=边长×边长 S=a×a

2 正方体 V:体积 a:棱长

表面积=棱长×棱长×6 S表=a×a×6

体积=棱长×棱长×棱长 V=a×a×a

3 长方形 C周长 S面积 a边长

周长=(长+宽)×2 C=2(a+b)

面积=长×宽 S=ab

4 长方体 V:体积 s:面积 a:长 b: 宽 h:高

表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

体积=长×宽×高 V=abh

5 三角形 s面积 a底 h高

面积=底×高÷2 s=ah÷2

三角形高=面积 ×2÷底三角形底=面积 ×2÷高

6 平行四边形 s面积 a底 h高

面积=底×高 s=ah

7 梯形 s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2 s=(a+b)× h÷2

8 圆形 S面积 C周长 ∏ d=直径 r=半径

周长=直径×∏=2×∏×半径 C=∏d=2∏r

面积=半径×半径×∏

9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长

侧面积=底面周长×高表面积=侧面积+底面积×2

体积=底面积×高体积=侧面积÷2×半径

10 圆锥体 v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

奉上,望采纳!

❼ 小学数学所有概念

、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 �0�8=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh

❽ 小学阶段数与代数领域中数的概念有哪些

小学数学数与代数包括四个方面:整数、小数、分数、百分数
一:整数
1、自然数
2、正数
3、负数
知识点二:小数
1、小数的意义
2、小数大小的比较
3、数的改写与求近似数
知识点三:分数
1、分数的意义
2、分数单位
3、分数的分类
4、分数的基本性质
5、分数与除法的关系
6、约分
7、最简分数
8、通分
9、分数大小的比轿局较
10、分数化小数
11、小数化为分数
12、分数的基本性质与小数基本性质的关系
知识点四
:百分数
1、
求常见的百分率
2、
求一个数比另一个数多(或少)百分之几
3、态数
求一个数闭闭让的百分之几是多少
4、
已知一个数的百分之几是多少,求这个数
5、
折扣
6、
利率
(8)小学数学中的概念有哪些方面扩展阅读
《小学数学课程标准》中关于数与代数部分的部分要求:
1、数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
2、符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
3、经历从日常生活中抽象出数的过程,认识万以
内的数、小数、简单的
分数和常见的量。
4、"数与代数"的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。

❾ 小学数学能力包括哪些内容

小学数学概念包括:数的概念、数的运算的概念、几何形体的概念、数的整除方面的概念.比和比例的概念、量的计量概念等.
运算定律共有五个:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律,要求在理解的基础上掌握,并能灵活运用.
运算性质指:一个数加上两个数的差;一个数减去两个数的和;一个数减去两个数的差;一个数乘以两个数的商;一个数除以两个数的积;一个数除以两个数的商;几个数的和除以一个数等.这部分内容只是用于简便运算.
运算法则包括:整数四则运算法则、小数四则运算法则、分数四则运算法则,要求在理解的基础上掌握法则,并能运用法则熟练地进行计算.

❿ 小学数学概念教学中涉及哪些概念

浅谈小学数学中的概念教学
概念是客观事物的本质属性在人们头脑中的反映,概念教学的过程是认识从感性上升到理性的过程。小学生年龄小,生活经验不足,知识面窄,构成了概念教学中的障碍。而数学概念又是小学数学基础知识的一项重要内容,是学生理解、掌握数余态学知识的首要条件,也是进行计算和解题的前提。因此,重视数学概念教学,对于提高教学质量有着举足轻重的作用。那又如何搞好小学数学概念教学呢?下面我粗浅地谈谈自己的一些看法:概念教学一般都分四个阶段:引入 、形成 、巩固 、发展。 一、概念的引入
1、概念的引入是概念教学的第一步。教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学生获得正确、完整、丰富的表象,把“纯粹”的数学知识与学生在日常生活的、熟悉的、具体的材料相联系,这样就有利于抽象的数学概念具体化、形象化,便于学生的理解,同时也能激发学生的思维和探索新知的欲望。例如,“分数的初步认识”的教学,主要要说明“谁”的几分之几,为了说明这一点,可出示不同形状和大小的图形,折出它们的二分之一,让学生明白虽然都是二分之一,却表示不同的大小,所以一定要说明“谁”的二分之一。
2、同时,在概念的引入中要格外做到旧知识的迁移。
任何一个数学概念都是在以往概念的基础上演变发展而来的,前指毁唤一个概念是后一个概念的基础和推理依据,旧概念铺垫不好,就会影响新概念的建立,如,在“整除”概念基础上建立了“约数”、“倍数”概念;由“约数”导出“公约数”、“最大公约数”;由“倍数”引出“公倍数”,再导出“最小公倍数”。 在几何知识中,由长方形的面积导出正方形、平行四边形、三角形、梯形等的面积公式。
3、最后还可以从计算引入新概念。有些概念不便于用具体事例来说明,而通过计算才能揭示数与形的本质属性。如,教学“互为倒数”这个概念时,可先出示一组题让学生口算:3×1/3,1/7×7,3/4×4/3,9/11×11/9„„,算后让学生观察这些算式都是几个数相乘,它们的乘积都是几。根据学生的回答,教师指出:象这样的乘积是1的两个数叫做互为倒数。其它如比例、循环小数、约分、通分、最简分数等都可以从计算引入。
或者几个数字依次不断重复出现,这样的数叫循环小数。”这里要抓住两点,一是前提是一个数的小数部分,与整数部分没关系,二是属性是一个数字或几个数字重复出现,且是依次不断的。明确了这两点就能迅速的判断出某些数字是不是循环小数,如7777.777、7.32132、2.2020020002„„这样的小数都不具备循环小数的本质属性,所以都不是循环小数。而0.324324„„、0.146262„„具备了循环小数的本质属性,它们都是循环小数。
2.注意比较有联系的概念的异同。
数学中的一些概念是相互联系的,既有相同点,又有不同之处。划清了异同界线,才能建立明确的概念。而对这类概念,应用对比的方法找出它们之间的联系、区别。使学生更加准确地理解和牢固记忆学过的概念。如教学“质数和合数”时,先给出一些自然数,让学生分别找出这些数的所有约数,在比较每个数的约数的个数;然后根据约数的个数把这些数进行分类,①只有一个约数的,②只有1和它本身两个约数的,③除了1和它本身,还有别的约数的,即约数有三个或三个以上的;最后引导学生根据三类数的不同特点,总结出“质数”和“合数”的定义。 3、运用变式,突出概念的本质属性。
概念是客观事物本质属性的概括。学生理解概念的过程即是对概念所反映的本质属性的把握过程,在教学过程中,通过变式的运用,可以使要领的本质属性更加突出,达到化难为易的效果。例如,在三角形概念教学中,通过不同形态(锐角三角形、直角三角形和钝角三角形)不同面积,不同位置的三角形与一些类似三角形的图形进行比较,就可以帮助学生分清哪些属于三角形的本质属性,哪些
横向、纵向联系,促进概念系统的形成,培养学生综合运用知识的能力,可以设计综合性练习等唯凯。但千万要按照由简到繁、由易到难、由浅入深的原则,逐步加深练习的难度。如学过“加法和减法的关系”后,可以安排以下三个层次的练习:
a. 看谁填得又对又快!
237+69=306 502-387=115 306-□=237 387+□=502 □-237=69 □-115=387
这一层是基本练习,它是刚学完新课之后的单项的、带有模仿性的练习,它可以帮助学生巩固知识,形成正确的认知结构。

阅读全文

与小学数学中的概念有哪些方面相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1048
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1692
西安瑞禧生物科技有限公司怎么样 浏览:951
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1642
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050