① 大学数学专业有哪些
大学数学类专业共有3个细分专业,名单分别为数学与应用数学专业、信息与计算科学专业、数理基础科学专业。
数学类专业名单
代码 数学类
70101 数学与应用数学
70102 信息与计算科学
070103T 数理基础科学
数学与应用数学专业简介:
数学与应用数学专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。
信息与计算科学专业简介:
信息与计算科学专业Information and Computing Science (原名:计算数学,1987年更名为计算数学及其应用软件,1998年教育部将其更名为信息与计算科学)信息与计算科学专业是以信息领域为背景。数学与信息,计算机管理相结合的计算机科学与技术类专业。该专业培养的学生具有良好的数学基础,能熟练地使用计算机,初步具备在信息与计算机科学领域的某个方向上从事科学研究,解决实际问题,设计开发有关计算机软件的能力。
本专业的课程体系和知识结构体现了在扎实的数学基础之上,合理架构信息科学与计算机科学的专业基础理论。通过信息论、科学计算、运筹学等方面的基础知识教育和建立数学模型、数学实践课、专业实习各环节的训练,着重培养学生解决科学计算、软件开发和设计、信息处理与编码等实际问题的能力,培养能胜任信息处理、科学与工程计算部门工作的高级专门人才。
数理基础科学专业简介:
数理基础科学专业强调打好数学和物理学的基础的同时,培养学生对数学的高度抽象思维能力,同时具有现代物理学的形象思维和实验技能,由于数理基础科学专业的学生具备较扎实的数学和物理学的专业知识。
该专业主要培养能从事数学、物理等基础科学教学和科研的有发展潜力的优秀人才,尤其是在数学、物理上具有创新的能力的人才,同时也为对数理基础要求高的其它学科培养有良好的数理基础的新型人才。
② 现代数学包括哪些分支分别在什么阶段学习
现代数学的三大分支是:代数、几何、分析。数学的定义是研究集合及集合上某种结构的学科,是形式科学的一种,集合论和逻辑学是它的基础,证明是它的灵魂。由于它与自然科学尤其是物理学关系极为密切,有时数学也被归为自然科学六大基础学科之一。数学中未被定义的概念是集合,其他的一切都是有定义的。数学的标准形式是公理法,即给集合和集合上的某结构下一组公理,其他的一切理论都由这组公理推导证明而来。集合上的结构就是定义在几何元素或子集之间的一些关系,原始分为三类:描述顺序关系的序结构,描述运算关系的代数结构,描述临近关系的拓扑结构,这些结构可以互相结合成为其他一些复杂的结构,比如几何结构,测度结构等等。由这些结构构造出来的各种集合或者说空间,就是不同数学分支研究的内容。代数学研究具有若干代数结构的集合,比如群、环、体、域、模、格、线性空间、各种内积空间等等,这些结构最初都是由初等代数,或者说初等数论和方程式论的研究中抽象出来的。代数学包括:初等代数、初等数论、高等(线性)代数、抽象代数(群论、环论、域论等)、表示论、多重线性代数、代数数论、解析数论、微分代数、组合论等等。几何学研究具有若干几何-拓扑结构的集合,比如仿射空间、拓扑空间、度量空间、仿射内积空间、射影空间、微分流形等。最初是由欧氏几何发展而来。几何学包括:初等(欧氏综合)几何、解析几何、仿射几何、射影几何、古典微分几何、点集拓扑、代数拓扑、微分拓扑、整体微分几何、代数几何等等。分析学研究带有若干拓扑-测度的集合,以及定义在这些集合上的函数空间比如可测-测度空间、赋范空间、巴拿赫空间、希尔伯特空间、概率空间等等,由微积分发展而来。分析学包括:数学分析、常微分方程、复变函数论、实变函数论、偏微分方程、变分法、泛函分析、调和分析、概率论等等。
③ 大学数学有哪些课程
‘壹’ 大学理科数学有哪些课程
高等数学
线性代数
复变函数
常微分方程
数学物理方法
概率统计
另外,根据专业不同,可能还会有其他科目
‘贰’ 大学数学包括哪些
“大学里读的数学”统称“大学数学”,教育部教育司属下稿弯有“大学数学课程指导委内员会”。下面有很多“分容指导委员会”而“工科数学课程分指导委员会”只是其中的一个。
“工科数学课程分指导委员会”管辖的课程有“高等数学”、“线性代数”、“概率论与数理统计”、“复变函数与积分变换”、“数理方程与特殊函数”、“计算方法”六门。
经管类的少点,并且高等数学(经管类一般称为微积分)
《高等数学》课程的内容为:函数与极限,一元函数微分学,一元函数积分学,空间解析几何,多元函数微分学,多元函数积分学(重积分与曲线、曲面积分),级数(数项级数、幂级数、傅立叶级数),微分方程,场论初步(梯度、散度、旋度)。
‘叁’ 大学数学专业都有哪些课程要详细
专业基础类课程:
解析几何
数学分析I、II、III
高等代数I、II
常微分方程
抽象代数
概率论基础
复变函数
近世代数
专业核心课程:
实变函数
偏微分方程
概率论
拓扑学
泛函分析
微分几何
数理方程
专业选修课:
离散数学(大二上学期)旦枯
数值计算与实验(大二下学期)
分析学(1)
代数学(1)
伽罗瓦理论
复分析
代数数论
动力系统引论
基础数论
偏微分方程(续)
一般拓扑学
理论力学
数学建模
微分拓扑
调和分析
常微分方程几何理论
分析专题选讲
组合数学与图论
范畴论
紧黎曼曲面
黎曼几何初步
偏微近代理论
交换代数
代数拓扑
同调代数
流形与几何
小波与调和分析
李群李代数
分析学Ⅱ
代数学Ⅱ
代数K理论
代数几何
多复变基础
泛函分析(续)
‘肆’ 大学数学专业基础课程有哪些
专业基础课有来数学分析、高等代自数、解析几何、概率论与数理统计:这三者是老三门,将来如果考研时要用到的;近代数键迟闷学的新三门是:拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数);另外其他的一些常见的分支包括楼上所说的复变函数、常微分、运筹、最优化,数学模型。
‘伍’ 数学专业有哪些专业课程
数学专业的专业课程有:
一、数学分析
又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。
数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
二、高等代数
初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。
发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。
三、复变函数论
复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。
四、抽象代数
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用“群”的概念彻底解决了用根式求解代数方程的可能性问题。
他是第一个提出“群”的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。
五、近世代数
近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。
法国数学家伽罗瓦在1832年运用“群”的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出“群”的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。
④ 大学数学专业有哪些数学课程
1、数学分析⑤ 数学有多少分支
数学有26个分支,分别是:
1、数学史
2、数理逻辑与数学基础
3、数论
4、代数学
5、代数几何学
6、几何学
7、拓扑学
8、数学分析
9、非标准分析
10、函数论
11、常微分方程
12、偏微分方程
13、动力系统
14、积分方程
15、泛函分析
16、计算数学
17、概率论
18、数理统计学
19、应用统计数学
20、应用统计数学其他学科
21、运筹学
22、组合数学
23、模糊数学
24、量子数学
25、应用数学(具体应用入有关学科)
26、数学其他学科
(5)大学中数学分支有哪些扩展阅读:
数学各个领域
基础与哲学
为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。数学逻辑专注于将数学置在一坚固的公理架构上,并研究此一架构的结果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。
现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性,千禧年大奖难题中的P/NP问题就是理论计算机科学中的着名问题。
离散数学
离散数学是指对理论计算机科学最有用处的数学领域之总称,这包含有可计算理论、计算复杂性理论及信息论。可计算理论检验电脑的不同理论模型之极限,这包含现知最有力的模型-图灵机。
复杂性理论研究可以由电脑做为较易处理的程度;有些问题即使理论是可以以电脑解出来,但却因为会花费太多的时间或空间而使得其解答仍然不为实际上可行的,尽管电脑硬件的快速进步。
最后,信息论专注在可以储存在特定媒介内的数据总量,且因此有压缩及熵等概念。做为一相对较新的领域,离散数学有许多基本的未解问题。其中最有名的为P/NP问题-千禧年大奖难题之一。一般相信此问题的解答是否定的。
应用数学
应用数学思考将抽象的数学工具运用在解答科学、工商业及其他领域上之现实问题。应用数学中的一重要领域为统计学,它利用概率论为其工具并允许对含有机会成分的现象进行描述、分析与预测。
大部份的实验、调查及观察研究需要统计对其数据的分析。(许多的统计学家并不认为他们是数学家,而比较觉得是合作团体的一份子。)数值分析研究有什么计算方法,可以有效地解决那些人力所限而算不出的数学问题;它亦包含了对计算中舍入误差或其他来源的误差之研究。
⑥ 数学分类有哪些啊
大致有如下几大部分:
1、分析:包括数学分析,实变函数,泛函分析,复分析,调和分析,傅里叶分析,常微分方程,偏微分方程等。
2、数论:包括初等数论,代数数论,解析数论,数的几何,丢番图逼近论,模形式等。
3、代数:初等代数,高等代数,近世(或抽象)代数,交换代数,同调代数,李代数等。
4、几何:初等几亮闭何,高等几何,解析几何,微分几何,黎曼几何,张量分析,拓扑学等。
5、应用数学:这里面棚差的分支太多了,例如概率统计,数值分析,运筹学,排队论等。
数学大致分为以下26个学科:
数学史、数理逻辑与数学基础、数论、代数学、代数几何学、几何链键皮学、拓扑学、数学分析、非标准分析、函数论、常微分方程、偏微分方程、动力系统、积分方程、泛函分析、计算数学、概率论;
数理统计学、应用统计数学、运筹学、组合数学、模糊数学、量子数学、应用数学(具体应用入有关学科)、数学其他学科。
⑦ 大学数学包括哪几门
大学数学一般是高等数学,包括微积分、代数学、几何学以及它们之间的交叉内容。高等数学的主要学习内容包括数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。
⑧ 大学数学有哪些
1. 高数
高等数学课程分为两个学期进行学习。它的教学内容通常包含一元函数微积分、多元函数微积分、空间解析几何与向量代数初步、微分方程初步、场论初步等。通过该课程的教学,不但使学生具备学习后续其他数学课程和专业课程所需要的基本数学知识,而且还使学生在数学的抽象性、逻辑性与严密性方面受到必要的训练和熏陶,使他们具有理解和运用逻辑关系、研究和领会抽象事物、认识和利用数形规律的初步能力。
2. 线性代数
线性代数是数学的一个分支,它的研究对象是向星,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。
3. 概率论
概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100C时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。
4. 微积分
微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法
⑨ 数学有哪些分支学科
数学分支有:
1.. 数学史
2.. 数理逻辑与数学基础
a.. 演绎逻辑学 亦称符号逻辑学
b.. 证明论 亦称元数学
c.. 递归论
d.. 模型论
e.. 公理集合论
f.. 数学基础
g.. 数理逻辑与数学基础其他学科
3.. 数论
a.. 初等数论
b.. 解析数论
c.. 代数数论
d.. 超越数论
e.. 丢番图逼近
f.. 数的几何
g.. 概率数论
h.. 计算数论
i.. 数论其他学科
4.. 代数学
a.. 线性代数
b.. 群论
c.. 域论
d.. 李群
e.. 李代数
⑩ 到今天为止,数学都有哪些分支
很高兴回答你的问题。数学分支有数学史、数雹搭理逻辑与数学基础、数论数肆亮、代薯宽数学、代数几何学、几何学、拓扑学、数学分析、非标准分析、函数论、常微分方程等。