导航:首页 > 数字科学 > 数学基本素养数学思想有哪些

数学基本素养数学思想有哪些

发布时间:2023-04-12 12:37:00

‘壹’ 数学六大素养包括哪些数学六大素养包括哪些初中

数学六大素养包括数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析。数学抽象是数学的基本思想,数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的基本保证,是人们在数学活动中进行交流的基本思维品质。

数据分析是大数据时代数学应用的主要方法,已经深入到现代社会生活和科学研究的各个方面。在数据分析核心素养的形成过程中,学生能够提升数据处理的能力,增强基于数据表达现实问题的意识,养成通过数据思考问题的习惯,积累依托数据探索事物本质、关联和规律的活动经验。

猜你喜欢

‘贰’ 初中数学核心素养包括哪些内容

初中数学核心素养包括数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析六大核心素养。数学教育的目标可分为显性目标与隐性目标两大内容,而核心素养属于隐性目标。在执行新课程改革标准时,初中数学教学除了传授知识包括数学概念、公式、法则、定理以外,更要促使学生形成数学逻辑思想,运用合理的数学方法解决现实问题,积累丰富的数学活动经验,这就是核心素养。
通俗地说,数学的核心素养有“真、善、美”三个维度:
1、理解理性数学文明的文化价值,体会数学真理的严谨性、精确性。
2、具备用数学思想方法分析和解决实际问题的基本能力。
3、能够欣赏数学智慧之美,喜欢数学,热爱数学。

‘叁’ 六大数学核心素养分别是什么意思该如何培养

数学学科核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析。

数学抽象

数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程。主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征。

数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学的产生、发展、应用的过程中。数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。

在数学抽象核心素养的形成过程中,积累从具体到抽象的活动经验。学生能更好地理解数学概念、命题、方法和体系,能通过抽象、概括去认识、理解、把握事物的数学本质,能逐渐养成一般性思考问题的习惯,能在其他学科的学习中主动运用数学抽象的思维方式解决问题。

逻辑推理

逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个命题的思维过程。主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比;一类是从一般到特殊的推理,推理形式主要有演绎。

逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的基本保证,是人们在数学活动中进行交流的基本思维品质。

在逻辑推理核心素养的形成过程中,学生能够发现问题和提出命题;能掌握推理的基本形式,表述论证的过程;能理解数学知识之间的联系,建构知识框架;形成有论据、有条理、合乎逻辑的思维品质,增强数学交流能力。

数学建模

数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。

数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式。数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力。

在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验。学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识。

直观想象

直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用图形理解和解决数学问题的过程。主要包括:借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、分析数学问题;建立形与数的联系;构建数学问题的直观模型,探索解决问题的思路。

直观想象是发现和提出数学问题、分析和解决数学问题的重要手段,是探索和形成论证思路、进行逻辑推理、构建抽象结构的思维基础。

在直观想象核心素养的形成过程中,学生能够进一步发展几何直观和空间想象能力,增强运用图形和空间想象思考问题的意识,提升数形结合的能力,感悟事物的本质,培养创新思维。

数学运算

数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程。主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果等。

数学运算是数学活动的基本形式,也是演绎推理的一种形式,是得到数学结果的重要手段。数学运算是计算机解决问题的基础。

在数学运算核心素养的形成过程中,学生能够进一步发展数学运算能力;能有效借助运算方法解决实际问题;能够通过运算促进数学思维发展,养成程序化思考问题的习惯;形成一丝不苟、严谨求实的科学精神。

数据分析

数据分析是指针对研究对象获得相关数据,运用统计方法对数据中的有用信息进行分析和推断,形成知识的过程。主要包括:收集数据,整理数据,提取信息,构建模型对信息进行分析、推断,获得结论。

数据分析是大数据时代数学应用的主要方法,已经深入到现代社会生活和科学研究的各个方面。

在数据分析核心素养的形成过程中,学生能够提升数据处理的能力,增强基于数据表达现实问题的意识,养成通过数据思考问题的习惯,积累依托数据探索事物本质、关联和规律的活动经验。



‘肆’ 小学数学核心素养包括哪些

数学核心素养包含数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析等六个方面。核心素养基于数学知识技能,又高于具体的数学知识技能。核心素养反映数学本质与数学思想,是在数学学习过程中形成的,具有综合性、整体性和持久性。

学生的数学素养不是一天两天就可以培养和形成的,实现它需要一个长期的过程。在小学数学教学中,优化和改进教学方式,对于培养学生的数学素养有着重要作用。

培养学生的核心素养方法

1、在课堂上善于激活学生已有的经验

数学来源于生活,生活中处处有数学。教学时,教师要能根据每一节课的教学目标,有意识地将数学知识联系学生的生活实际、生活经验,巧妙地设计生动有趣、富有挑战性的活动,将数学知识转化为学生探索生活的问题,能加深学生对学习数学价值的认识,激发学生探究数学知识的情感,促进学生全身心地投入课堂学习之中,从而提高课堂教学的有效性。

2、积极营造开放性课堂

数学课堂中,要为学生提供思考、创造、表现及成功的机会,这样学生才能主动积极的发展学生自我,从而使教师和学生共同拥有一个轻松而丰富的课堂,组织开展丰富多彩的活动课,把课内外、校内外的教育教学活动有机结合起来,通过大量的动手、动口、动脑的实践活动来激发学习数学的兴趣。

‘伍’ 数学基本思想有哪些

高中数学基本数学思想
1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证
2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证
3. 函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.
4. 数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.
5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.
在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.
中学数学中还有一些数学思想,如:
集合的思想;
补集思想;
归纳与递推思想;
对称思想;
逆反思想;
类比思想;
参变数思想
有限与无限的思想;
特殊与一般的思想.
它们大多是本文所述基本数学思想在一定知识环境中的具体体现.所以在中学数学中,只要掌握数学基础知识,把握代数,三角,立体几何,解析几何的每部分的知识点及联系,掌握几个常用的基本数学思想和将它们统一起来的整体思想,就定能找到解题途径.提高数学解题能力.
数学解题中转化与化归思想的应用
数学活动的实质就是思维的转化过程,在解题中,要不断改变解题方向,从不同角度,不同的侧面去探讨问题的解法,寻求最佳方法,在转化过程中,应遵循三个原则:1、熟悉化原则,即将陌生的问题转化为熟悉的问题;2、简单化原则,即将复杂问题转化为简单问题;3、直观化原则,即将抽象总是具体化.

策略一:正向向逆向转化
一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径.

例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.
A、150 B、147 C、144 D、141

分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了.
10个点中任取4个点取法有 种,其中面ABC内的6个点中任取4点都共面有 种,同理其余3个面内也有 种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种, 不共面取法有 种,应选(D).

策略二:局部向整体的转化
从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗.
例2:一个四面体所有棱长都是 ,四个顶点在同一球面上,则此球表面积为( )
A、 B、 C、 D、

分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为 ,所以正方体棱长为1,从而外接球半径为 ,应选(A).

策略三:未知向已知转化
又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生.
例3:在等差数列 中,若 ,则有等式
( 成立,类比上述性质,在等比数列 中, ,则有等式_________成立.

分析:等差数列 中, ,必有 ,
,
故有 类比等比数列 ,因为
,故 成立.
逻辑划分思想
例题1、已知集合 A= ,B= ,若B A,求实数 a 取值的集合.
解 A= : 分两种情况讨论
(1)B=¢,此时a=0;
(2)B为一元集合,B= ,此时又分两种情况讨论 :
(i) B={-1},则 =-1,a=-1
(ii)B={1},则 =1, a=1.(二级分类)
综合上述 所求集合为 .
例题2、设函数f(x)=ax -2x+2,对于满足1≤x≤4的一切x值都有f(x)≥ 0,求实数a的取值范围.
例题3、已知 ,试比较 的大小.
【分析】
于是可以知道解本题必须分类讨论,其划分点为 .

小结:分类讨论的一般步骤:
(1)明确讨论对象及对象的范围P.(即对哪一个参数进行讨论);
(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级讨论.;
(3)逐类讨论,获取阶段性结果.(化整为零,各个击破);
(4)归纳小结,综合得出结论.(主元求并,副元分类作答).

‘陆’ 数学的基本思想具体有哪些

数学的基本思想主要有下面的三个:一个是数学抽象的思想,一个是数学推理的思想,一个是数学建模的思想。
在基本思想下一层还有很多数学思想。例如像数学抽象的思想才能产生出来分类的思想、集合的思想、数形结合的思想、符号表示的思想、对称的思想、对应的思想、有限与无限的思想等等。在基本思想下面会派生出来很多的思想。
例如数学推理的思想,还能派生像归纳的思想,演绎的思想,公理化的思想,转化的思想,类比的思想,逐步逼近的思想,代换的思想,特殊一般的思想,等等。
例如像数学建模的思想,还能进一步派生出来,像简化的思想,量化的思想,函数的思想,方程的思想,优化的思想,随机的思想,抽样统计的思想等等。

‘柒’ 数学基本思想

数学基本思想有三大类:

抽象思想包括:分类思想、集告竖合思想、数形结袜腊大合思想

推理思想局顷包括:化归思想、演绎思想、特殊与一般思想

模型思想包括:函数思想、方程思想

‘捌’ 数学十大素养和六大核心素养

2021年4月29日 数学学科的六大核心素养一数学抽象数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程。主要包括:从数量与数量关系图形与图形关系中抽象出数学概念及概念之间的关系

(1)理解理性数学文明的文化价值,体会数学真理的严谨性、精确性;
(2)具备用数学思想方法分析和解决实际问题的基本能力;
(3)能够欣赏数学智慧之美,喜欢数学,热爱数学。

阅读全文

与数学基本素养数学思想有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1259
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1349
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:826
武大的分析化学怎么样 浏览:1212
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016