㈠ 数学期望是什么意思
数学期望(或期望值)是在统计意义下随机变量的一种数学术语,表示在多次随机试验中,每次试验的结果所带来的期望结果的总和。
对于一个森肢离散的卜链随机变量X,它的期望值(也称为数学期望)可以表示为:
E(X)=∑xP(X=x)
其中x是随机变量X的取值,P(X=x)是随机变量X取值为x的概率。
对于一个连续的随机变量X,它的期望值可以表示为:
E(X)=∫xf(x)dx
其中f(x)是随机变量X的概率密度函数。
期望值是随机变量的一个此弊世有用的数学特征,在统计意义下表示随机变量的中心位置。它是随机变量的平均值,但并不是所有的随机变量都有期望值,因为期望值只有在满足一定条件时才存在。
㈡ “数学期望”指的是什么
数学期望是一种重要的数字特征,它反映随机变量平均取值的大小,是试验中每次可能结果的概率乘以其结果的总和。这里的“期望”一词来源于赌博,大概意思是当下注时,期望赢得多少钱。
以大数据眼光看问题体现了数学期望中的大量试验出规律,不能光看眼前或特例,对一种现象不能过早下结论,要多听、多看从而获得拿个隐藏在背后的规律;
以大概率眼看光问题对应数学期望中的概率加权,大概率对应的取值对最后之结果影响大,所以当有了一个目标,为了实现它,就要找一条实现起来概率最大的路径。
(2)怎么理解数学期望知乎扩展阅读
应用:
1)随机炒股
随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率<50%,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。
2)趋势炒股
趋势炒股是建立在惯性理论上的,胜率跟经验有很大关系,基本上平均胜率可以假定为60%,则败率为40%,一般趋势投资者本着赚点就跑,亏了套死不卖的原则,如涨10%止盈,跌50%止损,数学期望为EP=60%*10%-40%*50%=-0.14,必输无疑。
只有止损线<15%时,趋势投资才有可能赢。但是止损线过低,就会形成频繁交易,一方面交易成本增加,另一方面交易者的判断力下降,也就是胜率必然下降,那么最终的下场好不到哪去。
3)价值投资
由于价值低估买,所以胜率比较高,且价值投资都预留安全边际,也就是向上的空间巨大,而下跌空间有限,所以数学期望值一定为正。
㈢ 怎么理解数学期望和方差是什么意思,有啥实际意义
这些本身是为了在分析现实生活中统计得到的数据的时候有用 数学期望,是为了准确地预期某件事未来可能的发展
方差,是为了分析一组数据中的差异情况,方差越小越“整齐”
㈣ 什么叫数学期望
以前,法国有个大数学家叫做布莱士·帕斯卡。
帕斯卡认识两个赌徒,这两个赌徒向他提出了一个问题。他们说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。赌了半天,A赢了4局,B赢了3局,时间很晚了,他们都不想再赌下去了。那么,这个钱应该怎么分?
是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这两种分法都不对。正确的答案是:赢了4局的拿这个钱的3/4,赢了3局的拿这个钱的1/4。
为什么呢?假定他们俩再赌一局,A有1/2的可能赢得他的第5局,B有1/2的可能赢得他的第4局。若是A赢满了5局,钱应该全归他;若B赢得他的第4局,则下一局中A、B赢得他们各自的第5局的可能性都是1/2。所以,如果必须赢满5局的话,A赢得所有钱的可能为1/2+1/2×1/2=3/4,当然,B就应该得1/4。
数学期望由此而来。
中文名
数学期望
外文名
Expected value
数学期望和方差公式数学期望公式大全正态分布正态分布公式数学期望公式二项分布的期望和方差公式数学期望值二项分布期望值公式条件概率计算公式
类型
离散型
离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(x)。数学期望是最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个, 则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。
连续型
设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。
若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。
能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。
离散型随机变量与连续型随机变量也是由随机变量取值范围(取值)确定,
变量取值只能取离散型的自然数,就是离散型随机变量,
比如,一次掷20个硬币,k个硬币正面朝上,
k是随机变量,
k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数√20,
因而k是离散型随机变量。
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量,
比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,
x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、√20等,因而称这随机变量是连续型随机变量。
㈤ 数学期望是什么意思 数学期望的解释
1、在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
2、需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
3、大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
㈥ 数学期望是什么嘛意思
1、数学期望(mean)是最基本的数学特征之一,运用于概率论和统计学中,它是每个可能结果的概率乘以其结果的总和。它反映了随机变量的平均值。
2、需要注意的是,期望并不一定等同于常识中的“期望”——“期望”未必等于每一个结果。期望值是变量输出值的平均值。期望不一定包含在变量的旦巧弊输出值集合中。
3、大数定律模族规定,当重复次数接近无宽拿穷大时,数值的算术平均值几乎肯定会收敛到期望值。
㈦ 怎样理解数学期望
1.什么是数学期正穗望?
数学期望亦称期望、期望值等。在概率论和统计学中,一个离散型随机变量的期望值是试验中每一次可能出现的结果的概率乘以其结果的总和。
这是什么意思呢?假如我们来玩一个游戏,一共52张牌,其中有4个A。我们1元钱赌一把,如果你铅此抽中了A,那么我给你10元钱,否则你的1元钱就输给我了。在这个游戏中,抽中的概率是113(452)113(452),结果是赢10元钱;抽不中概率是12131213,结果是亏1元钱。那么你赢的概率,也就是期望值是−213−213。这样,你玩了很多把之后,一算账,发现平均每把会亏−213 −213元。一般在竞赛中,若X是一个离散型的随机变量,可能值为x1,x2x1,x2……,对应概率为p1,p2p1,p2……,概率和为1,那么期望值E(X)=∑ipixiE(X)=∑ipix
Proof:
Var(X+Y)=E(X2+Y2+2XY)−E2(X)−E2(Y)−2E(X)E(Y)
Var(X+Y)=E(X2+Y2+2XY)−E2(X)−E2(Y)−2E(X)E(Y)
因为X,YX,Y互相独立
E(XY)=E(X)E(Y)
E(XY)=E(X)E(Y)
代入上式便得
Var(X+Y)=Var(X)+Var(Y)
Var(X+Y)=Var(X)+Var(Y)
从证明过程看独立条件必不可少。由于方差是由期望定义的,所以方差的一切性质可由期望导出,可见期望的概念要比方差重要。
㈧ 数学期望是什么意思
数学期望是一种重要的数字特征,它反映随机变量平均取值的大小,是试验中每次可能结果的概率乘以其结果的总和。这里的“期望”一词来源于赌博,大概意思是当下注时,期望赢得多少钱。
数学期望按照定义,离散随机变量的一切可能取值与其对应的概率P的乘积之和称为数学期望,记为E.如果随机变量只取得有限个值:x,y,z,...则称该随机变量为离散型随机变量。
应用
假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润,并求出最大利润的期望值。
以上内容参考:网络-数学期望
㈨ 如何理解数学期望这个概念
数学期望的常用性质:
1.设X是歼档丛随机变量,C是常数,则E(CX)=CE(X)
2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y).
3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)
在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量氏樱此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。
在概率分布中,期望蠢闷值和方差或标准差是一种分布的重要特征。