⑴ 三角形勾股定理怎么算 要详细过程
三角形的勾股定理可以通过公式a²+b²=c²来计算。勾股定理的定义为:直角三角形的两条直角边的平方和等于斜边的平方。念羡即勾股定理的表达式为A²+B²=C²,或者也可以写为C=√(A²+B²)。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为颤猜股,斜边为弦,所以称这个定理为勾股定理。
使用勾股定理解决三角形计算的问题方法如下:例如直角三角形的三条边是3(直角边)、4(直角边)、5(斜边)则3²+4²=5²,可得5=√(3²+4²)=√5²=5。三角形勾股定理的推论,勾股数组是满足勾股定理
勾股定理的证明方法仔洞拍:
在直角梯形ABDE中,∠AEC=∠CDB=90°,△AEC≌△CDB,
∵
⑵ 三角形勾股定理公式及证明方法
勾股定理是指直角三角形的两条直角边的平方和等于斜边的平方。接下来分享三角形勾股定理公式及证明方法。
1.基本公式
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a ² +b ² =c ² 。
2.完全公式
a=m,b=(m²/k-k)/2,c=(m²/k+k)/2其中m≥3
(1)当m确定敬纯为任意一个≥3的奇数时,k={1,m²的所有小于m的因子}
(2)当m确定为任意一个≥4的偶数时,k={m²/2的所有小于m的偶数因子}
3.常用公式
(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正梁帆整数)。
(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n²+2n,2n²+2n+1(n是正整数)。
(3)(8,15,17),(12,35,37)……2²*(n+1),[2(n+1)]²-1,[2(n+1)]²+1(n是正整数)。
(4)m²-n²,2mn,m²+n²(m、n均是正整数,m>n)。
设△ABC为一直角三角形,其直角为∠CAB。
其边为亮渣咐BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。
因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。
因此四边形BDLK=BAGF=AB²。
同理可证,四边形CKLE=ACIH=AC²。
把这两个结果相加,AB²+AC²=BD×BK+KL×KC
由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC
由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。
⑶ 直角三角形勾股定理如何证明
直角三角形勾股定理证明方弯纤洞法如下:
1、以a、b为直角边,以c为斜边做四个全等的直角三角埋枯形竖蚂,则每个直角三角形的面积等于2分之一ab。
2、AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。
3、证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。
⑷ 勾股定理的证明方法最简单的6种
勾股定理的证明方法最简单的6种如下:
一、正方形面积法
这是一种很常见的证明方法,具体使用的是面积来证明的。以三角形的三边分别作三个正方形,发现两个较小的正方形面积之和等于较大的那个三角形。勾股定理得到证明。
二、赵爽弦图
赵爽弦图是指用四个斜边长为c,较长直角边为a,较短直角边为c的指教三角形组成一个正方形。在这个较大的正方形里还有一个较小的正方形。通过计算整体的面积算出勾股定理。
五、毕达哥拉斯证明
毕达哥拉斯的证明方法,也是证明面积相等,蛋是才去的方法是对三角形进行了移动。比如将原来的四个分散在四周的三角形,两两相组合,洞缺发现两个正方形的面积和两个长方形的面积相等。
六、三角形相似证明
利用三角形的相似性来证明勾股定理。就是将三角形从直角边作垂线,这单个三角形相似。以三边分别作正方形,因为边成比例,所以面积也具有成比例的关系。
⑸ 勾股定理怎么证明呢
简单的勾股定理的证明方法如下:
拓展资料:
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中悔贺较小者为勾,另一搜昌长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工世前扒具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
参考资料:勾股定理_网络
⑹ 三角形勾股定理的证明方法
1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。
左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a^2+b^2=c^2。
这就是手侍我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2.希腊方法:直接在直角三角形三边上画正方形,如图。
容易看出,
△ABA’ ≌△AA'C 。
过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。
△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。
于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,
即 a2+b2=c2。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。
这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:
⑴ 全等形的面积相等;
⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:
如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。
如图,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比较以上二式,便得
a2+b2=c2。
这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原毕差吵三角形相似。
如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我们发现,把①、②两式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,这就是
a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。它利用了相庆袜似三角形的知识。
在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:
设△ABC中,∠C=90°,由余弦定理
c2=a2+b2-2abcosC,
因为∠C=90°,所以cosC=0。所以
a2+b2=c2。
这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
⑺ 勾股定理的几种证明方法
勾股定理常用的公式就一个,就是a的平方加上b的平方等于c的平方,如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是:a²+b²=c²。
勾股定理是一个基本的几渗坦何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理的逆定理丛蚂桐:如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形,其中c为斜边。即直角三角形两直角边长的平方和等于斜边长的平方。
欧几里得证法
在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点画一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在这个定理的证明中,我们需要如下四个辅助定理:
如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)
三角形面积是任物悉一同底同高之平行四边形面积的一半。
任意一个正方形的面积等于其二边长的乘积。
任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。
⑻ 直角三角形的勾股定理怎么证明
勾股定理:b^2=c^2-a^2
正弦定理:b/(sinB)=c/(sin90)
除了具有一般三角形的性质外,具有一些特殊的性质:
1、直角三角形两直角边的平方和等于斜边的平方。∠BAC=90°,则AB²+AC²=BC²(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边手团上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边搏银上高的乘积。
(8)数学三角形怎么证明勾股定理扩展阅读:
在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
证明方法多种,下面采取较简单的几何证法。
先证明定理的前半部分,Rt△ABC中,∠ACB=90°,∠A=30°,那么BC=AB/2
∵基薯宴∠A=30°
∴∠B=60°(直角三角形两锐角互余)
取AB中点D,连接CD,根据直角三角形斜边中线定理可知CD=BD
∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形)
∴BC=BD=AB/2
再证明定理的后半部分,Rt△ABC中,∠ACB=90°,BC=AB/2,那么∠A=30°
取AB中点D,连接CD,那么CD=BD=AB/2(直角三角形斜边上的中线等于斜边的一半)
又∵BC=AB/2
∴BC=CD=BD
∴∠B=60°
∴∠A=30°
⑼ 勾股定理的证明方法
勾股如歼樱定理的证明方法如下改仔:
求证:勾股定理,即直角三角形的两条直角边的平方和等于斜边的平方。
证明:分两种情况来讨论,即两条直角边长度不相等与相等。
两条直角边长度不相等。
如图,分别设直角三角形的边长为a、b、c,(a<b,c为斜边)。
将四个同样大小的三角形拼成右图形式,则:
则右图正方形渣丛的面积为四个直角三角形的面积之和。
得:c^2=4*(aa/2)=2a^2=a^2+a^2
即a^2+a^2=c^2,原命题得证。
所以,直角三角形的两条直角边的平方和等于斜边的平方。