㈠ 什么叫对称
对称是指相对的两部分在形状、大小、长短和排列上都相等或相当。
定义三:雹和《对称》是举世闻名的大手笔小册子肢肆早,是作者大学退休前“唱出的一支天鹅曲”,它由普林斯顿大学出版社将外尔(C.H.H.Weyl,曾译作魏尔或者凡尔)退休前的系列讲座汇编而成书。据说许多网络全书的“对称”条目都将外尔的这部小书列为主要参考文献。
定义四:在日常生活中和在艺术作品中,“对称”有更多的含义,常代表着某种平衡、比例和谐之意,而这又与优美、庄重联系在一起。外尔的书首先用一章讲镜像对称,涉及手性诸问题,有十分丰富的内容。
㈡ 什么是对称性物体
在几何学中,如果一个物体经过一个变换(transformation),例如反射或者旋转,仍能和以前看起来一样,我们就称这个物体具有对称性(symmetry)。对称性是所有图案背后都会表现出的基本数学原理,它对于艺术(用于建筑、陶器、绗缝(布艺)、地毯制造)、数学(涉及几何、群论和线性代数)、生物学(有机体的形状)、化学(分子形状和晶体结构)和物理学(对称守恒量)都是非常重要的。“symmetry”一词是一个十六世纪的拉丁词语,由希腊语“syn-”(一起)和“metron”(度量)派生而来的。
对称的类型
反射类(Reflective)
一般来讲,对称通常指的是镜面对称(mirror
symmetry)或称为反射对称(reflective
symmetry),即一个物体可以被一条直线(二维时)或一个平面(三维时)分成彼此镜像的两半,例如等腰三角形和人脸就分别是一个二维和三维对称图形的例子。数学上来讲,一个物体表现出镜面对称性是指“在反射下保持不变”,也就是在某种特定方式下反射物体并不会改变它的外观。
Figure 1 等腰三角形和蝴蝶是具有反射对称性的例子。二维物体有一条对称线,三维物体有一个对称面,它们在反射下都是不变的。
在生物学中,反射对称性通常被称为双侧对称性(bilateral symmetry),这些例子很容易在哺乳动物、爬行动物、鸟类和鱼类中找到。
旋转类(Rotational)
生物学中另一种常见的对称形式是径向对称(radial
symmetry),在花类和许多海洋生物中我们都可以发现它,例如海葵、海星和水母。在数学上,这样的物体因为“在旋转下保持不变”而被描述为能够表现出旋转对称性(rotational
symmetry),它们可以通过一个点(二维时)或一个轴(三维时)旋转某些量而保持不变。
Figure 2 阴阳符号和风车是具有旋转对称性的例子。二维物体有一个对称中心,三维物体有一个对称轴,它们在旋转下是不变的。
平移类(Translational)
想象一下,如果我们把所有方向都延伸到无穷远,一个二维或三维图形“在平移下保持不变”,我们就称它具有平移对称性(translational symmetry)。所有的棋盘花纹、大多数攀爬架以及地毯和壁纸的图案都具有平移对称性。
Figure 3 壁纸的图案和攀爬架是具有平移对称性的例子,如果把所有方向都延伸到无穷远,那它们在平移下是不变的。
其他形式的对称
尽管一些例子说明物体可以具有不止一种对称性(例如六角星具有六条反射对称线和一个六重旋转不变点),但是有一些物体和图案只在两种变换同时进行的条件下保持不变。
瑕旋转(Improper Rotation) = 反射+旋转
一个带有定向边缘的五角反棱柱(pentagonal antiprism)在瑕旋转下保持不变(在下面的例子中,水平旋转36°,再沿着中心水平面面反射)。
滑移反射(Glide Reflection) = 平移+反射
如果我们延伸任意方向至无穷远,则下图中的脚印图案是滑移反射不变的(平移加反射)。
螺旋旋转(Screw Rotation) = 平移+旋转
同样的,如果我们延伸任意方向至无穷远,则下图中的一个由四面体构成的螺旋结构是螺旋旋转不变的。(平移加一个131.8°的旋转)
㈢ 数学中的对称有哪几种其定义是什么
1轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.;这时,我们也说这两个图形关于这条直线对称.比如说圆、正方形等.
2.中心对称:②中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称.例矩形,菱形,正方形,圆等
注意:轴对称和中心对称是指一个图形(图形特性),而成轴对称和成中心对称是指两个图形(位置关系)
㈣ 关于对称名词解释定义是什么
对称是指物体或图形在某种变换条件下,其相同部分间有规律重复的现象,亦即在一定变换条件下的不变现象。对称的意思是什么呢?下面是我为你整理对称名词解释,供大家阅览!
对称的意思
对称(symmetry)指物体或图形在某种变换条件下,其相同部分间有规律重复的现象,亦即在一定变换条件下的差扮戚不变现象。对称是几何形状、系统、方程及其他实际上或概念上之客体的一种特征。
对称的解释
基本解释
指图形虚陵或物体两对的两边的各部分,在大小、形状和排列上具有一一对应的关系。
我国的建筑,…绝大部分是对称的。
引证解释
1. 指第二人称。
朱自清《你我》:“利用呼位,将他称与对称拉在一块儿。”
2. 物体或图象对某一点、直线或平面而言,在大小、形状和排列上相互对应。
洪深《戏剧导演的初步知识》:“画面构成的第一条原则是‘对称’:左右相等,不偏不倚。”
对称的案例
守恒律与对称性的联系
可以肯定的是,杨振宁1962年出版的《原子物理中某些发现的小史》(中译本为《基本粒子发现简史》,上海科学技术出版社1963年出版)引用过(译名为凡尔),杨先生引的那句话“不对称很少仅仅由于对称的不存在”,已成为深刻的哲理 名言 。我写《分形艺术》时,也装潢门面,把外尔和杨先生的话一并引了。在自然科学和数学上,对称意味着某种变换下的不变性,即“组元的构形在其自同构变换群作用下所具有的不变性”,通常的形式有镜像对称(左右对称或者叫双侧对称)、平移对称、转动对称和伸缩对称等。物理学中守恒律都与某种对称性相联系。
生物形态的对称
一般指图形和形态被点、线或平面区分为相等的部分而言。在生物形态上主要的对称分为下列各种:(1)辐射对称:与身体主轴成直角且互为等角的几个轴(辐射轴)均相等,如果通过辐射轴把含有主轴的身体切开时,则常可把身体分为显镜像关系的两个部分。例如海星可见有五个辐射轴。另外在高等植物的茎和花等,也常具有辐射对称的结构;
(2)双辐射对称:只有两个辐射轴,彼此互成直角,形式上可以把它看成是从辐射对称向左右对称的过渡型(例如栉水母);
(3)左右对称:或称两侧对称,是仅通过一个平面(正中矢面)将身体分为互相显镜像关系的两个部分(例如脊椎动物的外形)。在正中矢面内由身体前端至后端的轴称为头尾轴或纵轴,这个轴与身体长轴大都一致。在正中矢面内与头尾轴成直角并通过背腹的轴为背腹轴或矢状轴。还有与正中矢面成直角的轴称正中侧面轴(或内外轴)、该轴夹着正中矢面,彼此相等且具有方向相反的极性,如果将两侧的正中侧面轴合起来看成为一轴时,则称为横轴。在辐射对称中,如相当于海星的一根足的同型部分,称为副节(paramere),副节其本身成两侧对称。一般两侧对称的每一半为与同一轴相关而极向相反的同型部分,此称为对节或体辐。副节、对节等的同型部分,一般来看,仅相互方向不同,可认为这是与对外界的关系相同有着密切的联系。所以在个体发生或系统发生过程中其生活方式变化时,而与之相关的对称类型也时有变化。例如棘皮动物在自由运动的幼体期具有左右对称的体制,在接近静止生活的成体,则显有辐射对称的体制。再如比目鱼等左右体侧可成为二次的背腹关系。把无对称的关系称为非对称(asy-metry),其中具有规则形态的在生物界可广泛见到的有缺判螺旋性。此外还有即使外形上表现对称,但与外界无直接关系的内脏,基本既可表现为对称的,也有不少由于形态变形而表现为不对称的。
中心对称
概念
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。
中心对称和中心对称图形是两个不同而又紧密联系的概念.它们的区别是:中心对称是指两个全等图形之间的相互位置关系,这两个图形关于一点对称,这个点是对称中心,两个图形关于点的对称也叫做中心对称.成中心对称的两个图形中,其中一个上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点的对称点,又都在这个图形上;而中心对称图形是指一个图形本身成中心对称.中心对称图形上所有点关于对称中心的对称点都在这个图形本身上.如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形,如果把对称的部分看成是两个图形,那么它们又是关于中心对称.
也就是说:
① 中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
②中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
中心对称图形
正(2N)边形(N为大于1的正整数)、线段、圆、平行四边形、直线等。
实际上,除了直线外,所有中心对称图形都只有一个对称点。
既不是轴对称图形又不是中心对称图形:不等腰三角形,直角梯形,普通四边形
中心对称的性质
①关于中心对称的两个图形是全等形。
②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。
中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,称这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点.
辐射对称动物
辐射对称动物Radiata是左右对称动物的对应词。顾维尔(G.L.Cuv-ier)把大部分的棘皮动物、腔肠动物、海绵动物、扁形动物及滴虫类命名为辐射对称动物。冯·西波德(K.T.von Siebold)把棘皮动物、腔肠动物、海绵动物总称为辐射对称动物。以后,被命名为腔肠动物(有时也包括棘皮动物)。
科学与艺术
科学和艺术都很重视对称性。对于科学,对称性决定了各种可能的守恒定律,因而具有更根本性的意义。在艺术中,对称性常与平衡、形状、形式、空间等一同讨论。人们通常从静态表现上理解对称性,有一定意义,但更重要的是从操作意义上、从生成过程上理解对称性。
一在科学中,对称性是指某种操作下的不变性或者守恒性,对称性常与守恒定律相联系。与空间平移不变性对应的是动量守恒定律;与时间平移不变性对应的是能量守恒定律;与转动变换不变性对应的是角动量守恒;与空间反射(镜像)操作不变性对应的是宇称守恒。在弱相互作用中,“宇称”不守恒,自然界在C或P下不是对称的,在CP下也不是对称的,但却是CPT对称的。这里C表示电荷变号操作,相当于反转变换,如由底片洗出照片,电子变正电子,物质变反物质;P表示镜像反射操作,如人照镜子;T表示时间反演操作,如微观可逆过程。也就是说,当同时把粒子与反粒子互变(C)、左与右互变(P)、过去与未来互变(T),自然界又是对称的。
但把物质的宇称、超荷、同位旋等所有物理性质都加起来考虑,会发现它们总体上并不守恒,即对称性有破缺。人们假设,这是只考虑“物质”的结果,如果把“真空”也算在内,就有可能找回“失去的对称性”,总体上这世界仍然是对称的、守恒的。问题是,到目前为止,科学家对真空的了解还不够多。为什么CP不守恒,而CPT就守恒?CPT守恒意味着什么?CPT真的永远守恒吗?这都是些非常重要而艰难的问题,还有很大一部分需要科学家进一步研究来解答。
对称性是第一世界固有的,还是第二世界强加于其上的?是自然界的属性,还是自然科学中物理定律的属性?或者问,对称性是客观的,还是主观的?一种简便的而肯定的回答是,对称性是客观的、自然世界固有的属性。这也是过去流行的观点,但此观点对于解决问题并不比相反的观点更具有优势。如果把认识世界视为一个复杂的、不断进步的过程,理解对称性也要放在一个过程之中进行,在此认识系统中,“属性”的词汇是不恰当。如果仍然保留“属性”一词,它也只能指对象在某种条件下表现出来的功能,这也可以称作“条件主义”科学哲学。条件也即约束,可对应于某种操作,标示某种认识层次。对称性原理均根植于“不可观测量”的理论假设上;不可观测就意味着对称性,任何不对称性的发现必定意味着存在某种可观测量。(李政道)那么“不可观测”是不是由于我们认识能力而导致的一种假相呢?
李政道说:“这些‘不可观测量’中,有一些只是由于我们目前测量能力的限制。当我们的实验技术得到改进时,我们的观测范围自然要扩大。因而,完全有可能到某种时候,我们能够探测到某个假设的‘不可观测量’,而这正是对称破坏的根源。然而,当确实发生这样的破坏时,一个更深入的问题是,我们怎么能够确信这不是意味着世界不对称呢?是否有可能,自然界基本规律仍然是对称的?是自然规律不对称,还是世界不对称?这两种观点究竟有什么区别呢?” 此论述概括了理论物理学的认识过程,更涉及一些基本的哲学问题。
二
当年数学家魏尔(H.Weyl)在讨论艺术作品中的对称性时,提到西方艺术像其生活一样,倾向于缓解、放宽、修正,甚至打破严格的对称性,接着有一名句:“但是不对称很少是仅仅由于对称的不存在。”(《对称》,商务1986,第11页)杨振宁引用了魏尔的话,并加上一句评论:“这句话有物理学中似乎也是正确的。”(《基本粒子发现简史》,上海科技1979,第58页)我们则又加一句,无论对于科学还是艺术,“同样,找到对称也绝对不是仅仅由于非对称的不存在。”
科学和艺术都是讲究对称性的,对称性意味着某种规则,很难想象像科学与艺术如此宏大而不断积累的人类文明会没有规则,杂乱无章。那么是否可以推论出,科学与艺术只关注规则、对称性,并且只有对称的东西才称得上科学与艺术呢?答案是否定的。李政道1996年5月23日在中央工艺美术学院的演讲中曾指出:“艺术与科学,都是对称与不对称的巧妙组合。”这无疑是正确的。对称是美,不对称也是美,准确说,对称与对称破缺的某种组合才是美。“单纯对称和单纯不对称都是单调。一个对称的建筑只有放在不对称的环境空间中才显得美,反之亦然。”
无论对于科学还是对于艺术,对称性都涉及不同的方面和不同的层次。不同方面指对称的多样性:平移对称(连续装饰花纹、花布)、旋转对称(穹窿、五角星、伞、晶体)、左右对称性(建筑立面、人体)及联合操作对称性(埃舍尔的《骑士图》,类似CP操作)。不同方面还涉及局部与整体的关系,对称性有长程整体对称(如晶体),也有局部短程对称(如准晶、凯尔特装饰艺术),这些在科学与艺术作品中都有许多实例。不同层次指对称性依赖于物质层次或者观念层次,在不同的层次上对称性可以很不相同,以人体为例,外表是左右对称的,但内脏则不是,心脏通常靠近左侧,肾等还是对称的。凯尔特艺术(Celticart)有很强的规则性,可以明显地发现少数基本结构在不同的层次上重复出现,不同层次的对称性与对称性破缺相互照应,细节丰富、层次分明,给予人以较强的装饰效果。可以肯定地说,凯尔特艺术有意识地利用了伸缩变换不变性,即标度变换下的不变性,也就是自相似对称性。特别有趣的是,在分形科学与艺术中,能够观察到各种对称性,既有不同方面的也有不同层次的,通过复函数计算机迭代,非常容易地展示这些对称性。
猜你喜欢:
1. 关于对称的意思和精选造句
2. 关于解剖名词解释
3. 有关对称的同义词和造句
4. 关于断层名词解释
5. 关于杜甫名词解释
6. 债券名词解释
7. 名词解释、简答题、列举题的记忆诀窍
8. 公益广告名词解释
㈤ 请问,数学中的对称怎么解释请问,数学中的对称怎么解释请通俗解释一下对称。举个生活中的例子。
对称的概念在初中教授。通俗地说:数学中的对称就是经过某种变换后能完全重合的情况,又有分为轴对称和中心对称两种。
㈥ 对称是什么意思
原点对称是数学中的一种几何现象,原点是X轴与Y轴的交点。奇函数的任何一个点都有对称点,直角坐标系上一点(x,y)关于原点对称的点为(-x,-y)。
如果一个函数 f(x) 的定义域内的任何一个 x 和值域内的任何一个 y,都有 f(- x) = - f(x) ,且定义域也关于原点对称的话就说 f(x) 为奇函数(就是说这个函数 f(x) 的任何一个点(X,Y)都有对称点的话就称其为奇函数)。
一、中心对称和中心对称图形是两个不同而又紧密联系的概念。它们的区别是:中心对称是指两个全等图形之间的相互位置关系,这两个图形关于一点对称。这个点是对称中心,两个图形关于点的对称也叫作中心对称。
成中心对称的两个图形中,其中一个图唤弊升形上所有点关于对称中心卜亮的对称点都在另一个图形上;反之,另一个图形上所有点的对称点,又都在这个图形上。而中心对称图形是指一个图形本身成中心对称。
中心对称图形上所有点关于对称中心的和老对称点都在这个图形本身上。如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形,如果把对称的部分看成是两个图形,那么它们又是关于中心对称。
二、对称的定义:
定义一:对称,指物体或图形在某种变换条件(例如绕直线的旋转、对于平面的反映,等等)下,其相同部分间有规律重复的现象,亦即在一定变换条件下的不变现象。
定义二:作为哲学范畴的对称是指宇宙的根本规律对立统一规律。同一性是宇宙的本质属性,也是对立统一规律的本质属性,所以作为哲学“对称”的对立统一规律不同于斗争性占主导、作为“矛盾”的对立统一规律。
具体科学或日常生活中的对称,包括对应、对等、平衡等均为哲学“对称”的具体内容。对称逻辑、对称经济学的“对称”属于哲学范畴。
定义三:《对称》是举世闻名的大手笔小册子,是作者大学退休前“唱出的一支天鹅曲”,它由普林斯顿大学出版社将外尔(C.H.H.Weyl,曾译作魏尔或者凡尔)退休前的系列讲座汇编而成书。据说许多网络全书的“对称”条目都将外尔的这部小书列为主要参考文献。
㈦ 什么叫对称与反对称
对称是指物体或图形在某种变换条件(例如绕直线的旋转、对于平面的反映,等等)下,其相同部分间有规律重复的现象,亦即在一定变换条件下的不变现象。
反对称是指分析对象的几何形状、边界条件、材料属性关于某个面对称,而载荷关于该面反对称,并称该面为反对称面。该面上的节点满足法向旋转为零,切向位移为零。
(7)数学中对称现象的本质是什么扩展阅读:
对称平衡论把宇宙万物产生发展看成事物从不对称向对称转化的动态平衡过程的理论。在社会发展领域,对称平衡论把社会发展看成以主体为主导的、主客体从不对称向对称转化的动态平衡过程;以主体为主导的、主客体从不对称向对称转化,是社会发展的最根本动力。
在社会经济领域,对称平衡论把社会经济发展看成以主体创造价值活动为主导的、主客体从不对称向对称转化的动态平衡过程;以主体创造价值活动为主导的、主客体从不对称向对称转化,是社会经济发展的最根本动力。对称平衡论把对称看成动态的非线性过程,是对客观事物本质的具体反映。
对反对称双正交小波所具有的多尺度边缘提取能力进行了理论分析,并提出了一种基于反对称双正交小波的多尺度边缘提取算法。分析和实验结果均表明在反对称双正交小波变换域内能够得到精确的多尺度边缘信息。
由于双正交小波所具有的良好特性(如线性相位、高阶消失矩等)使其广泛地应用于图像压缩领域,许多图像都采用基于小波的压缩算法进行压缩编码。因此研究结果为利用反对称双正交小波实现压缩域内基于边缘信息的图像检索提供了依据,这也是进一步深入研究的方向。
㈧ 轴对称图形教学反思
完全重合 完美对称——《轴对称图形》磨课有感
《初步认识轴对称图形》是北师大版小学数学三年级下册第二单元第一课时的内容。通过试教、说课、上课三个环节,使自己对于这节课的内容有了非常深刻地认识。
一、教材解读
本节课内容属于《空间与图形》这个大范畴,学生已有的知识基础是一年级认识方位与简单的平面图形;为以后学习简单图形旋转90°打下基础。本节课教材提供了民间剪纸,脸谱图案,天安门城楼等图片,加上教师课外收集到的许多学生感兴趣的图片,为本课创设了一个具有强烈美感的氛围,让学生在欣赏美的同时引出疑问:它们有什么共同特点?然后让学生通过观察图片,动手操作,发现轴对称图形的特征。教材非常重视实践活动,充分体现了“思维从动作开始”的理念。为了让自己对《初步认识轴对称图形》的教学获得真知灼见,我决定在实践中摸索。在解读教材和初步的教学设想之后,我便开始了试教。
二、第一次教学及反思
[教学简录]
一、欣赏,感受对称
师:欣赏生活中收集到的具有对称性质的图片。你有什么感觉?请仔细观察,发现他们身上共同的特点。
生:对称。
师:你真了不起,还知道这个词,你是怎样理解对称的呢?
生:两边一样。
师小结:像这样两边形状大小完全相同的物体,我们就说他们是对称的。
二、认识对称图形
师:是不是所有的图形都是对称的?它们又是怎样对称的?我们又怎样来证明它们是不是对称图形?这就是我们这节课要研究的内容。为了研究这些问题,老师还带来了一些平面图形。
教师出示平面图形,学生小组讨论分类。
师:判断自己的分类,并引导学生用“折”的办法证明图形轴对称。
引导学生用同样的方法把对称图形都来折一折,说说你的发现。
生1:我发现,对折后边上齐齐的,不多也不少。
生2:两边合在一起了。
……
师:也就是说对折后,左右两边完全重合了。
三、认识对称轴
师:现在把我们折过的对称图形打开看看,你又有什么新的发现?
生:有折痕。
师:折痕的左右两边是“完全重合”。
对称的图形,对折后能完全重合的这条折痕,我们就把它叫做对称轴。同学们,这些对称图形,通过对折,发现它们能完全重合,我们就把它们叫做“轴对称图形”
四、练习巩固
1、学生判断轴对称图形。
师:在数学上对称轴还可以画出来,我们一般用虚线表示。
2、判断几何图形中有没有我们今天认识的轴对称图形呢?出示:正方形、长方形、一般三角形、圆形、平行四边形
生:取出平行四边形,动手折,判断是否轴对称?
3、游戏:教师出示轴对称的梁竖字母图形的一半,学生猜出是什么字母。(HE XIAO)
请同学们连起来拼一拼——贺小。这就是同学们生活、学习的地方,美丽的贺村小学。
4、老师给你图形的一半,画出它的轴对称图形。
五、教师进行课堂小结。
[反思]
人的学习活动主要有三种形式,一是体验学习,二是发现学习,三是接受学习。学生坐在教室里听老师讲残疾人是如何生活的,这是——接受学习;而让学生蒙上双眼象双目失明的人那样去做简单家务,这便是——体验学习。两种学习效果相比,显然后者优于前者,因为后者是亲身经历。体验学习巧戚不仅激活了学生认知上的需求,更重要的是激活了学生的身心,是知情合一的学习,能给学生留下深刻的印象。
结束了第一次教学,就感觉很遗憾,学生不能很好地掌握轴对称及轴对称图形的特征;“完全重合”就像是建立在沙滩上的海市蜃楼,无论是导入还是新授环节,总觉得太粗糙,缺少了一些数学味。于是,我自问:
(一)轴对称的本质是什么?
和平移、旋转一样,轴对孝渣陵称也是对图形进行变换的方法之一。上完课之后,我查找了一些资料,想法有二:
1、物体的对称现象,抽象为平面图形后,是对称图形,本节课我们研究的是平面图形的轴对称现象。所以第一环节和第二环节之间,我存在着很大的漏洞,如何从物体的对称现象过渡到“平面图形”的对称,这是我急需解决的问题。
2、轴对称图形就是对折之后能够完全重合的图形。何谓“完全”?什么是对称轴?对称轴具有什么特征?在上面的教学设计和过程实施中,学生被迫“浅尝则止”,根本没充分体会什么是“重合”和“完全重合”。学生在动手操作的过程中,不能用自己的语言总结出轴对称图形的特征,从而对于如何判断平面图形是否轴对称存在很大的疑惑。
(二)体现本质的载体是什么?
数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处。不然就是隔靴搔痒,舍本求末。但关键处选准了,也不能没有情景,没有载体,不然学生不能理解。这样的教学也就成为我们教师的一厢情愿。“我们的一切教学应以学生的发展为本,”应该找到既适合知识本身又能为学生所理解和接受的活动内容和活动形式。综合考虑了很多方案。我认为应该抓住“对折”这一活动做文章。“重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象。
有了以上这些认识与思考,我进行了第二次教学。
三、第二次教学及反思
[教学过程]
一、欣赏,感受对称
师:欣赏生活中收集到的具有对称性质的图片。你有什么感觉?请仔细观察,发现他们身上共同的特点。
生:对称。
师:你真了不起,还知道这个词,你是怎样理解对称的呢?
生:两边一样。
师小结:像刚才我们所看到的这样两边形状大小完全相同的物体,我们就说他们是对称的。(板书:对称)
生活中你还见过哪些对称的物体?
二、认识对称图形
师:那刚才我们看见的是这些对称物体的照片,我们把它画在纸上,就得到这样一些平面图形。这些图形还是对称的吗?(图略)
生:是对称的。
师:小朋友真聪明,一眼就看出这些图形都是对称的。那么像这样的图形,我们就把它们叫做对称图形。(在“对称”后板书:图形)
师::是不是所有的图形都是对称的?它们又是怎样对称的?我们又怎样来证明它们是不是对称图形?这就是我们这节课要研究的内容。为了研究这些问题,老师还带来了一些平面图形。教师出示平面图形。
请小组长拿出课前老师发给你的1号信封,取出里面的平面图形,学生小组讨论分类。
师:你们都同意他的分法吗?你们怎么知道这些图形就是对称图形,有什么办法来证明吗?
引导学生得出“对折”这一重要方法。学生演示给同学看。
引导学生用同样的方法把对称图形都来折一折,说说你的发现。
生1:我发现,对折后边上齐齐的,不多也不少。
生2:两边合在一起了。
……
师:也就是说对折后,左右两边重合了。(板书:重合)
同学们,刚才我们把这些对称图形通过对折,发现它们重合了。那现在我们小组里的同学再来折一折不对称的图形,看看这回又有什么发现?
它们有没有重合呢?
真的没有?一点点重合都没有吗?
这个图形对折后重合了,这个也重合了,那这两种重合有什么不一样呢?
这些对称的图形对折后全部重合了,也就是完全重合了!(板书:完全)
师:通过拍手活动,用两只手掌体验完全重合。
三、认识对称轴
师:现在把我们折过的对称图形打开看看,你又有什么新的发现?
生:有折痕(板书:折痕)
师:老师也通过折一折,得到一些不同的折痕,这两条折痕和你们的有什么不一样吗?
生:我们的折痕左右两边一样。
师:也可以说折痕的左右两边是“完全重合”,而老师折出来的折痕左右两边不会一样。
师小结对称的图形,对折后能完全重合的这条折痕,我们就把它叫做对称轴。(板书:对称轴)
同学们,这些对称图形,通过对折,发现它们能完全重合,我们就把它们叫做“轴对称图形”(补充板书:轴)
轴对称图形
对折 完全重合
折痕 对称轴
四、判断
1、师:轴对称图形在我们的生活中是随处可见的,判断下面图中哪些是轴对称图形。这些轴对称图形的对称轴又在哪儿呢?请在脑子里想一想。
在数学上对称轴还可以画出来,我们一般用虚线表示。 (演示)
生:独立判断图形是否轴对称。
2、判断几何图形中有没有我们今天认识的轴对称图形呢?出示:正方形、长方形、一般三角形、圆形、平行四边形(并简单判断它们分别有几条对称轴。)
生:从2号信封中取出平行四边形,判断是否轴对称?
通过刚才的活动,你们觉得在判断一个图形是不是轴对称图形的时候,什么最重要?(对折,完全重合)
3、游戏:老师要给你们看的是几个字母图形,他们都是轴对称图形。老师只能给你们看图形的一半,你们要猜出是什么字母。(HE XIAO)
请同学们连起来拼一拼,看看是什么?(是贺小)对啦,这就是同学们生活、学习的地方,美丽的贺村小学。
4、老师给你图形的一半,画出它的轴对称图形。
五、教师小结新课
其实呀,对称不仅给人以美的感受,它还有一定的科学性呢,眼睛的对称让我们看物体更加准确;耳朵的对称让我们听声音更加的清晰,有立体感。蜻蜓的对称是为了平衡的需要,人们受到启发,设计出来的飞机才能够平稳的飞翔在蓝天。
今天,我们走进了一个轴对称的世界,一个美丽的世界,愿同学们擦亮双眼,在今后的数学学习中找到更多的美。
[第二次反思]
(一)我的课堂
1、仅仅多了一步——将照片上的物体画下来,就变成了平面图形。让轴对称图形的研究变得具有意义了。
2、仅仅多了两次比较:一是将“对称图形”折一折,然后将“不对称图形”也折一折,使学生对“部分重合”与“完全重合”有了一个深刻的对比过程。“完全”这个概念建立地既清晰又准确。学生初步掌握了如何判断图形是否轴对称的重要方法。二是轴对称图形的对称轴折痕与教师随手折的折痕的比较,使学生明白只有使对称图形对折后能完全重合的这条折痕,才叫做图形的对称轴。
(二)我的学生
我的学生正处于低段与高段的衔接处,其数学思维也正不断发展,但体验永远是最好的教育形式之一,只有我们俯下身来走进儿童的心灵,走进儿童的精神世界,撷取学生身边生活中的事例,采用学生喜欢的方式创设情境,才会使学生获得真正的感悟、深刻的体验,才能最终将这感悟、体验沉淀到他的内心深处,成为一种素质,一种能力,伴其终生,受用一生。
㈨ 数学对称的定义是什么
对称:对称是指图形或物体对某一点、某条直线或某个平面的反射运动,在形状、大小、长短和排列等方面都相等或相当,具有一一对应的关系。
概念解读:
数学上是先定义一个点对一条直线(对称轴)的对称点,再定义一个图形对一条直线(对称轴)的对称图形,最后才透过如果一个图形对直线L(对称轴)的对称图形是自己本身的特殊情况,引入对称图形及对称轴的意义。
我们可以把对称理解为:图形或物体对某一点、直线或平面而言,在大小、形状和排列上具有一一对应的关系。
对称的狭义定义为:
一个物体包含若干等同部分,对应部分相等。不改变物体内部任何两点间的距离而使物体复原的操作,称为对称性操作,物理学中也称反演操作。
对称性操作主要有:旋转、反映、反演、象转、反转。旋转和反映是基本对称操作。完成对称性操作的几何元素称为对称元素,包括:旋转轴、镜面、对称中心、映轴、反轴。对称轴和对称面是基本的对称元素。
㈩ 如何理解 ‘对称’ 是与非对称相联系的对称
对称,物体或图形在某种变换条件(例如绕直线的旋转、对于平面的反映,等等)下,其相同部分间有规律重复的现象,亦即在一定变换条件下的不变现象.
在日常生活中和在艺术作品中,“对称”有更多的含义,常代表着某种平衡、比例和谐之意,而这又与优美、庄重联系在一起.外尔的书首先用一章讲镜像对称,涉及手性诸问题,有十分丰富的内容.大家也许还记得,去年诺贝尔化学奖奖励的课题主要是“手性分子催化”问题.如今,手性药物在药品市场占有相当的份额,有机分子手性对称性已经是相当实用和热门的话题.这里面仍然遗留下许多基本的问题没有解答,比如生命基本物质中的氨基酸、核酸的高度一致性的手性(即手性对称破缺)是如何起源的?植物茎蔓的手性缠绕是由什么决定的?同种植物是否可能具有不同的手性?左右对称在建筑艺尺数术中有大量应用,但是人们也注意到完全的左右对称也许显得太死板,建筑设计者常用某种巧妙的办法打破严格的左右对称,如通过园林绿化或者通过立面前的雕塑或者广场非对称布局,有意打破严格的对称.通常,严格左右对称的建筑,都尽可能放在了具有非对称的周围环境之中.公众可能较感兴趣的是作者对摩尔文化、埃及和中国实际装饰艺术品中对称性的分析.在二维装饰图案中,总共有17种本质上不同的对称性.作者说,在古代的装饰图案中,尤其是古埃及的装饰物中,能够找到所有17种对称性图案.到了19世纪,有了变换群的概念以后,人们才从理论上搞明白只有17种可能性(波利亚的证明),而古陵团首人确实穷尽了所有这些可能.外尔有一句话特别值得注意:“虽然阿拉伯人对数字5进行了长期的摸索,但是他们当然不能在任何一个有双重无限关联的装饰设计中,真正嵌入一个五重中心对称的图案.然而,他们尝试了各种容易让人上当的折衷方案.我们可以这样说,他们通过实践证明了在饰物中使用五边形是不可能的.”(pp.102-103)这一论述非常关键,阿拉伯装饰艺术的确时常费力地尝试使用五次旋转对称.连续装饰图案中嵌入五次对称图元的麻烦之处在于,五次对称要涉及黄金分割,安排下一个五边形,则周围需要作复杂的调整,这要比安排三角形、四边形和六边形的情况复杂得多.《对称》还用相或历当篇幅讲晶体点阵的对称性,我当年学过结晶学和矿物学,知道这是相当复杂的事情,现依稀记得32种单形和230种空间群的数字,具体内容已经想不清楚了.外尔的处理当然并非想具体展示各种可能的晶格对称性,书中讨论得相当简略,这也给普通诸者阅读造成了困难.要想真正搞明白230种空间群,还真要读地质学的图书《结晶学与矿物学》.