❶ 数学美的内涵是什么阐述数学美的内涵。
一、数学的简洁美
简洁本身就是一种美,而数学的首要特点在于它的简洁。大干世界,纷繁多样,在杂乱无章的客观现象中,抽象出数学理论,用简单、清晰的数学形式来表达,反过来再解释、处理更多的客观事物和现象,这就是数学的简洁美。就象优秀的诗词讲究用最少的文字表达最丰富的内容一样,数学中的公式、法则、定理等,用精炼的语言和符号,高度概括了现实世界量的关系和结构。你看,世界上存在着何其多的三角形,形态之多令人难以想象,然而它们的面积计算,都可以高度凝结成这样一个关系式广计算所有多边形的面积。形式是如此的简单,而应用是那么的广5=十。A,由此我们还能推泛。数学符号的产生发展,使得数学的表达式极其简洁。一大堆的数字计算,一连串的数字算式,是多么让人心烦理不出一个头绪来。但是我们可用一个数学表达式将它们全部概括进来。连乘积n.(n一1)(n-2)……3·2·1写起是多么的麻烦啊,可以用阶乘符号“n!”十分简洁地表示了出来。使用符号“》”来进行推理,给人一种严谨有序清晰明快的美感。
二、数学的统一美
把众多的概念、公式和理论,用一个更高层次的概念、公式或理论统一起来,会使人们得到一种心理上的愉悦,这就是数学的统一美。在数学研究中,人们总是在谋求更高程度的抽象,以便有更大的概括面和更广的适用范围,这样许多概念又属于一个种概念之下,许多公式又有一个统一的公式。如小学几何中有许多概念:正方形、长方形、梯形、平行四边形,但它们却都是四边形。在小学数学中,我们有三角形、平行四边形、梯形的面积公式、虽然它们各不相同.但它们却可用公式s=1/2(a十b)h统一起来(公式中“a为上底、b为下底、h为高)。在数学学习中,许多优秀的学生,在解题过程中,时时在追求着数学问题中存在的统一美,他们觉得只有找到一类题型的统一解答规律,才是真正掌握数学知识的主人,才能从中获得美的享受。
三、数学的奇异美
奇异是指规律的奇巧或结果的出人预料。数学中的奇异美就象波澜起伏的文学故事,珍贵奇异的艺术品一样扣人心弦,给人以美的享受。无论你画出怎样的一个三角形,它的三条高线交于一点,三条中线交于一点。三条角平分线交于一点,其中显示了一种奇巧的美,使人们感到三角形中似乎蕴含着一种神奇的规律,让人惊奇、神秘。在运算中,我们会对3十9十3×9=39,4十9十4×9=49等式惊讶.因为左右两边的数字是如此的对称,我们还会为4109589041096×83=341095890410968这个乘法算式拍案称奇,因为两乘数与积的数字竞然会如此地巧合。数学中不少结论令人赞叹,因为其巧妙无比.正是因为这一点数学才有无穷的魅力。在数学的发展史上,往往正是数学自身的奇异性的美,吸引着数学家向更新、更深的层次探索,弄它个水落石出。
四、数学美的奇异性
美在于奇特而令人惊异.——培根
奇异性是数学美的一个重要特性.奇异性包括两个方面内容:一是奇妙,二是变异.数学中不少结论令人 赞叹,因为其巧妙无比,正是因为这一点数学才有无穷的魅力.变异是指数学理论拓广或统一性遭到破坏后,产生新方法、新思想、新概念、新理论的起点.变异有悖于人们的想象与期望,因此就更引起人们的关注与好奇.凡是新的不平常的东西都能在想象中引起一种乐趣,因为这种东西会使人的心灵感到一种愉快的新奇,满足它(心灵)的好奇心,将会使之得到原来不曾有过的一种观念.数学中许多新的分支的诞生,都是人们对于数学奇异性探讨的结果.在数学发展史上,往往正是数学自身的奇异性的魅力,吸引着数学家向更新、更深的层次探索,弄它个水落石出!
❷ 什么是数学美“”“”“”“ 、
黄金分隔就是典型的数学美
抽象点来说,现实中的点线面构成的美都应该划在数学里面
初高中学的很多东西会发现,用数学等式表示圆,椭圆,双曲线等等
在高等数学中数学能表示出来的立体图形更多
其实现实中的美还真有数学,而数学就是来为这些美定位的
❸ 数学美的几种类型,并举例说明
美的不同表现形式有不同的形容: 壮美、俊美、秀美、柔美、优美 数学美也呈现多样性,我们分为: 简洁美、对称美、和谐美和奇异美。 简洁美是人们最欣赏的一种 美,在艺术、建筑、徽标等的 设计中最为常见。中国画更是 体现了简洁美。数学以简洁而 着称! ?大数和小数的表示: 10 221 ,2 86243 ,10 -900 ?数的表示: 所有数均可由1,2,3,5,6,7,8,9,0 表示.(称为阿拉伯数字,但是由 印度人发明的.由阿拉伯人传 到西方.)形式上和位置上意义 非凡, 绝妙非常.实际上, 0的出 现大约要晚好几百年. 23 ? 6 → 23 ∪ 6 → 2306 简洁美的发展过程: 235×4=940 罗马人的算法: CCXXXV IV CCCCCCCCXXXXXXXXXXXXVVVV DCCC 表示900 CMXL CXX XX 表示40 十进制与二进制:十进制:89 89= 1 2 +0 2 + 1 × 2 + 1 1× +0× ×2 +0×2 +0×2 +1×2 二进制:1011001 3 2 1 0 6 5 4 十进制:符号多(10),表示上简洁,方 便人工运算,但系统复杂. 二进制:符号少(2), 表示上麻烦,方便 机器运算,但系统简单. 二进制与最简单的自然现象(信号的 二进制与最简单的自然现象 信号的 两极)结合 造就了计算机! 结合,造就了计算机 两极 结合 造就了计算机! 其它符号的简洁美: 未知量:x,y,z 已知量:π,e, a,b,c 函数关系:f(x) 形状符号: 其它符号的简洁美: d ? × ÷ 运算符号: +, , , , sin,cos, , dx F 函数与逻辑: 函数与逻辑: = 0 ? v = c,牛 顿 第 一 定 律 d F = ( m v ), 牛 顿 第 二 定 律 dt m1 m 2 ,万有引力定律 F =k 2 r 几何:点对称、线对称、面对称、 球对称。球面被认为最完美! 代数与函数论:共轭数(共轭复数、 共轭空间)。 运算:交换律、分配律,函数与反 函数运算。 二项式定理的展开式中的系数构成 的杨辉三角形: 的杨辉三角形: 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 5 1 命题变换中: 命题变换中: 命题 逆命题 否命题 逆否命题 统一与和谐美是数学美的又一侧面, 统一与和谐美是数学美的又一侧面, 它比对称美具有广泛性。 它比对称美具有广泛性。以几何与 代数的和谐与统一的表现为例: 代数的和谐与统一的表现为例:行 列式与矩阵 平面上过点 平面上过点(x1, y1),(x2, y2)的直线 过点 的直线 方程: 方程 x x1 x2 y 1 y1 1 = 0 y2 1 平面上过点(x 平面上过点 1, y1),(x2, y2), (x3, y3) 的圆方程: 的圆方程 2 2 x +y x y 1 x +y x +y x +y 2 1 2 2 2 3 2 1 2 2 2 3 x1 x2 x3 y1 1 =0 y2 1 y3 1 平面上所有直线一般形式: ax + by + c = 0 平面上所有二次曲线一般形式: ax + 2bxy + cy + dx + ey + f = 0 2 2 其性质和类型取决三个量: h = a + c, δ = a b b c a b d ,? = b d c e e f δ ,?是平移和旋转变换下不变的量。 1.? ≠ 0, δ > 0, 为椭圆; δ < 0, 为双曲线; δ =0为抛物线. 2.?=0,δ > 0, 为椭圆; δ < 0为相交两直线; δ =0平行或重合两直线 奇异:稀罕、出呼意料但有引人入胜! 1 = 0.166666666666666666666L 6 1 = 0.142857 142857 142857 142857 L 7 987654321 = 8.00000007290000066339 123456789 000603684905493532699 11470239L 而且 : 987654321 9 = 8+ 123456789 123456789 而 9 9 ? 91 ? ?10 3 = 10 = 9 10 ∑ ? 10 ? 123456789 10 ? 91 n = 0 ? 10 ? 3 ∞ n 所以 987654321 ? 91 ? 3 ?10 = 8 + 9 10 ∑ ? 10 ? 123456789 n = 0 ? 10 ? ∞ n 勾股定理 : x + y = z 有非零的正整数解: 2 2 2 3,4,5;5,12,13. 其一般解为: L x = a ? b , y = 2ab, z = a + b 2 2 2 3 3 2 其中a > b为一奇一偶的正整数. 那么,3次不定方程:x + y = z 有没有非零的正整数解? 3 此即为着名的费马猜想 : x +y =z n n n 当n > 2时没有正整数解! 费马在一本书的边上写道, 他已经解决了 这个问题.但是没有留下证明在此后的300 . 年一直是一个悬念. 18世纪最伟大的数学家欧拉(Euler)证明了 n=3,4时费马定理成立; 后来,有人证明当n<10 是定理成立。 20世纪80年代以来,取得了突破性的进展。 1995年英国数学家Andrew Wiles的108页论 文解决了费马定理。他1996年获wolf奖, 1998年获Fielz奖。 5 推广 : n ≥ 4时不定方程 x + x +L+ x n 1 n 2 n n ?1 =x n n 是否有非平凡整数解 ?
❹ 数学的美体现在哪些方面
几乎所有的数学家都认为数学是美的。着名数学家巴拿赫说“数学是最美的,也是最有力的人类创造。”
再给大家看一些图片感受一下;
(转自头条号-数学经纬网)