导航:首页 > 数字科学 > 初中数学怎么学好二次函数

初中数学怎么学好二次函数

发布时间:2023-04-21 17:11:35

‘壹’ 如何学好数学二次函数

二次函数
二次函数与圆的知识一样,在初中数学占有重要的地位.对二次函数的考查经常跟方程等知识相结合.

概念与图像

重点难点
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.
(2)理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象,探索掌握二次函数的性质.

内容提要
(1)形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(2)当aO时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0.
典型一例
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
求增种树的棵数与橙子总产量之间的函数关系.
解:假设果园增种x棵橙子树,果园橙子的总产量为y(个),依题意,果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子.
y=(100+x)(600-5x)
=-5x²+100x+60000.

图象性质
重点难点
(1)确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图拦正象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质.
(2)正确理解函数y=a(x-h)2+k的图象饥碰与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质是难点.

探索求知
1.你能发现函数y=2(x-1)2+1的图象有哪些性质吗?
函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的.
当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1.
2.你能说出函数y=-13(x-1)2+2的图象与函数y=-13x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?
函数y=-13(x-1)2+2的图象可以看成是将函数y=-13x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)

描点法

重点难点
(1)用描点法画出二次函数y=ax2+bx+c的图象;通过配方确定抛物线的对称轴、顶点坐标.
(2)理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)是难点.
探索求知
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?
函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1).
2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
函数y=-4(x-2)2+1的图象可以看成是将函简肢悔数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的.
3.函数y=-4(x-2)2+1具有哪些性质?
当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1.
4.不画出图象,你能直接说出函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标吗?
因为y=-12x2+x-52=-12(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2).

经典一例
请画出函数y=-12x2+x-52的图象,并说明这个函数具有哪些性质.
分析:由以上探索求知,大家已经知道函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标.根据这些特点,可以采用描点法作图的方法作出函数y=-12x2+x-52的图象,进而观察得到这个函数的性质.
解:(1)列表:在x的取值范围内列出函数对应值表;
x … -2 -1 0 1 2 3 4 …
y … -612
-4 -212
-2 -212
-4 -612

(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点.
(3)连线:用光滑的曲线顺次连接各点,得到函数y=-12x2+x-52的图象.
说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的.

‘贰’ 初三数学的二次函数实在太难了,到底怎样才能学好呢

重点就是,该背的背,该记的记,学会画图,多练习,学习没有捷径可走。

二次函数表达式:y=ax²+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<棚族0时,开口向下。

交点个或首数

Δ=b²-4ac>0时,抛物线与x轴有2个交点。

Δ=b²-4ac=0时,抛物线与x轴有1个交点。

Δ=b²-4ac<0时,抛物线与x轴没有交点。

抛物线是轴对称图形,对称衫和数轴为直线x=-b/2a

‘叁’ 初中数学二次函数如何学好

初中二次函数的学习第一要先学好最简单的二次函数y=ax^2的图象,开口,对称轴,增减性。第二要弄清楚y=ax^2通过上下移动就变成y=ax^2+h形式的二次函数,同样要记住开口,顶点,对称轴和增减性。第三就是弄清楚y=α(x+k)^2是y=ax^2左左移动就得到了。第四就是y=ax^2通过上下,左左移动就得到y=a(x+k)^2+h得到。还是要记住图象的开口,顶点坐标,对称轴。最后会把y=ax^2+bx+c通过配方法化为y=a(x+k)^2+h的形式。基本就学会二次函数了。当然用待定系数法求二次函数的解析式也是必须要会的。

‘肆’ 如何学好初中数学的二次函数

学理科东西学会求本质
做类推
二次函数都是抛物线函数(它的函数轨迹就像平推出去一个球的运动轨迹,当然这个不重要)
因此
把握它的函森仿贺数图像就能把握二次函数
在函数图像中
注意几点(标准式y=ax^2+bx+c,且a不等于0):
1、开口方向与二次项系数a有关

则开口向上
反之反是。
2、必有一个极值点,也是最值点。如果开口向上,很容易想象这个极值点应该是最小点
反之反是。且极值点的横坐标为-b/2a。极值点很容易出应用题。
3、不一定和x轴有交点。当根的判定式Δ=b^2-4ac<0时,没有交点,也就是ax^2+bx+c=0这个方程式“没有实大租数解”(不能说没有解!具体你上高中就知道了)如果
Δ=0
那么正好有一个交点,也就是我们说的x轴与函数图像向切。对应的方程有唯一实数解。Δ>0时,有两个交点,对应方程有2个实数解此派。
4、不等式。如果你把上面3点搞清楚了
参考函数图像
不等式你就一定会解了。

‘伍’ 初三数学怎样学二次函数的方法

二次函数是初中数学学习的重点、难点,也是中考的热点,二次函数学习的成败关系到初中函数学习能否全面掌握,是中考成绩获得高分的关键。以下是我分享给大家的初三数学二次函数的学习方法,希望可以帮到你!

初三数学二次函数的学习方法
一、掌握学习函数的几个基本知识点

函数学习内容主要由三部分组成:(1)函数解析式。(2)函数图象及画法。(3)函数的性质

1.函数的概念

如果y=ax2+bx+c(a,b,c是常数,a≠0)那么y叫做x的二次函数,特征①等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2,②二次项系数a≠0,x的最高次数是2,是经常考试的考点。

2.二次函数的图象及画法

①用配方法化成顶点式。②确定图象的开口方向、对称轴、顶点坐标。③在对称轴两侧利用对称性、描点画图。

(3)画y=ax2+bx+c的草图,抓住五个要点:①开口方向;②对称轴;③顶点;④与y轴交点;⑤与x轴交点。

3.二次函数的性质,性质的理解一定要借助图形,不要死记硬背结论,在理解基础上记忆

二、掌握抛物线与两坐标轴交点的求法

1.二次函数y=ax2+bx+c与y轴交点,求法:设x=0得y=a×02+b×0+c,交点(0,c)

2.二次函数y=ax2+bx+c与x轴交点,求法:设y=0得ax2+bx+c=0设此方程两根为x1,x2,则交点坐标(x1,0)(x2,0)

三、熟练掌握求解析式的三种方法

用待定系数法可求二次函数解析式,确定二次函数解析式一般需要三个独立条件,根据不同条件选择不同设法

1.设一般式:y=ax2+bx+c

若已知条件是图象上三个点坐标。将已知条件代入所设一般式求出a,b,c的值。

2.设顶点式:y=a(x-h)2+k若已知二次函数图象的顶点坐标或对称轴方程与最大值或最小值,将已知一个点坐标的条件代入所设顶点式,求出待定系数,最后将解析式化为姿中一般式。

3.设两根式:y=a(x-x1)(x-x2)若已知二次函数图象与x轴两个交点坐标为(x1,0)(x2,0),将第三点(m,n)的坐标或其他已知条件代入所设两根式,求出待定系数a,最后将解析式化为一般形式。

例1:已知二次函数图象过点A(0,-3),B(-1,5),C(2,-1),求二次函数解析式。

例2:已知x=2时,函数有最大值-1,且图象经过点(3,-4),求二次函数解析式。

例3:已知二次函数图象与x轴交点是A(-2,0),B(1,0)且经过点C(2,8),求解洞虚析式。

四、掌握抛物线与x轴的三种位置关系及条件

1.与x轴有两个交点 2.与x轴有一个交点 3.与x轴没有交点

五、掌握二次函数图象的平移

例1:抛物线y=2x2沿y轴向上平移3个单位后解析式是

例2:抛物线y=3(x+1)2-2是由函数y=3x2沿y轴向 平移 个单位后沿x轴向 平移 个单位得到。

六、掌握已知二次函数图象的应用

已知二次函数y=ax2+bx+c的图象,确定y=ax2+bx+c中a、b、c及b2-4ac的符号。

1.a的作用:①决定开口方向和大小,a>0开口向上,a<0开口向下。②|a|越大开口越窄,|a|越小开口越宽;

2.b由对称轴的位置决定;

3.c由抛物线与y轴交点纵坐标决定;

4.b2-4ac由抛物线与x轴交点情况决定。

迹颤山例:如图,已知二次函数y=ax2+bx+c的图象,试确定a,b,c,b2-4ac,a+b+c的符号。

七、掌握二次函数与一次函数的关系

所有函数,利用关系式联立,均可解出它们交点的坐标
初三学习数学的存在的问题
1、准确率不够

数感不行,经常有低级错误,如186/222不约分。再有注意力不集中,脑袋想着3手上写个5。草稿的习惯不行,草稿零乱导致计算错误。所以,请各位家长不要老以粗心为借口挂在嘴边。我才说的几条大致就是小孩所谓粗心的原因。所以我们只为成功找方法,不为失败找借口。

2、速度慢

为何速度慢,常用数的积累不够。有的孩子拿到729马上想到27的平方,9的立方,3的6次方,有的孩子27的平方还要算半分钟,这就是速度上的差异。别看初一这些东西,算理简单,但快速计算,并且准确得结果,基本0失误还真不容易。这点大家要特别注意。

3、符号感不强

尤其乘除同级计算应该先定符号,再计算,而不是按部就班的折腾。还有整式加减至少要练到几层括号一步去掉。一元一次方程还有一元一次不等式同样可以这样。
初三学习数学的重要思想
1、“方程”的思想

数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。

所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。

2、“数形结合”的思想

大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与 “形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。

3、“对应”的思想

“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数 “2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。这就是运用“对应”的思想和方法来解题。初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用。

猜你喜欢:

1. 九年级数学复习方法指导

2. 九年级学好数学学习方法

3. 初三数学解题技巧

4. 初中数学学习方法

5. 怎么才能有效学好初三数学

6. 初中数学自学方法

‘陆’ 初三数学的二次函数实在太难了,到底怎样才能学好呢

但从发散学生思维与开发学生数学能力的角度看,在初中对学生的函数能力进行培养是很必要的。那么作为初中二次函数到底学生要掌握哪些知识?现在老师来分享一下教学所得。当开口方向向下时,在对称轴的左边y随x的增大而增大,在对称轴的右边,y随x的增大而减小。对称,研究一个二次函数的图像与性质,这些是必备的,也是研究二次函数图像与性质的基础。

在h里面左加右减,在k里面上加下减。单调性要具体结合开口方向和对称轴的左右两边具体对待。根据图象求解二次函数解析式。 撑握这些内容你就学会了二次函数了,愿你学习进步。要牢记二次函数的几个公式,比如基本式、顶点式、两点式以及二次函数的定点公式还有对称轴。所以他是一个动态的东西。而我们以前所学的基本上都是静态的,这也就是学生难以理解的原因吧。

‘柒’ 如何快速学好二次函数

二次函数是初中数学的重点,要学好先搞清基本概念和性质,在此基础上解题。
主要性质概念有:
解析式,定义域,值域。
A为什么不能等于0?A>0,A<0图象特点。
图像的形状段启,对称轴的坐标,和y轴的交点,分析三正敏种不同情况下和x轴的关系。
当二次函数值为0时,是一元二次方程,两者概念之间联系等。
再做不握清如同题型的题。

‘捌’ 初中二次函数怎么学最简单方法

1、盯春树立类比思想意识,理解二次函数闷滚:深刻理解二次函数,尤其是函数的图象与凯罩耐性质,图象和性质是解决一切与二次函数有关问题的根本力量。因而,学生需要主动理解、深刻解读二次函数,而深刻理解之道在于类比思想。

2、熟悉一些简单二次函数的图像。

‘玖’ 初三数学的二次函数实在太难了,到底怎样才能学好呢

初三的二次元函数确实旦岩比较难一些,想要学好的话,那么就要多练习,尤其是书上的基本知识,把这个掘消学好以后,然判迟知后套用这种格式就可。

阅读全文

与初中数学怎么学好二次函数相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1259
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1349
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:826
武大的分析化学怎么样 浏览:1212
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016