A. 世界上出现数学文明最早的国家是哪个国家
这个问题比较复杂.
首先\古数学分为西方和东方两个体系.东方是研究数的\西方是研究形的
东方是把数学用来实际生产上,并且是按照经验总结的有一定实际意义的.西方是纯粹的形的研究所以在那个时代 西方人的建筑啊\祭祀的场地啊\礼器啊包括雕塑\绘画,而他们所使用的发放都是利用透视的关系的所以的非常高端,而东方人基本都从事贸易什么的.
第二,每一个国家都有自己的计算方法,包括进制的不同,有10进的有16进的有24进的还有60进的,所以在古代数学只有萌芽.并没有系统的结合和统一.
但是这一时期有个好的方面是,东方已印度为首发明了现在的印度数码来记数,并且利用了现在使用的位置记数,印度数码就是平时说的阿拉伯数字_呵呵 不是阿拉伯人的哦.西方以希腊为首形成了很好的形的研究的发展.
综合来说我认为,古数学的奠基是有印度和希腊一起完成的.
B. 四大文明古国中最早有数学概念的是国家是
埃及
C. 历史上其他国家的计数方法有哪些
计算方法又称“数值分析”。是为各种数学问题的数值解答研究提供最有效的算法。主要内容为函数逼近论,数值微分,数值积分,误差分析等。常用方法有迭代法、差分法、插值法、有限元素法等。现代的计算方法还要求适应电子计算机的特点。数值分析即“计算方法”。
中国人在计数时,常常用笔画“正”字,一个“正”字有五画,代表5,两个“正”字就是10,以此类推。这个计数方法简便易懂,很受中国人欢迎。那么,到底是谁最先开始使用这个聪明的方法的呢?据说这种方法最初是戏院司事们记“水牌账”用的。
清末民初,戏园(俗称茶园)是人们日常生活中重要的娱乐场所。每天戏园里要迎来很多观众。可是那时候还没有门票这种东西,戏园就安排“案目”(就是现在所说的服务员)在戏院门口招徕看客,领满五位入座,司事(记账先生)便在大水牌(类似黑板)上写出一个“正”字,并标明某案目的名字。座席前设有八仙桌,看客可边品茶边看戏。稍后由案目负责计数、收费。到散场结账时准确无误。
这个方法随着戏院实行门票制而被废弃了,但是作为一种简明、易懂、方便的记数法,一直流行于民间。到现在很多中国人在统计选票、清点财物等时候,都还保持着用“正”字计数的习惯。
数学术语,a×10的n次幂的形式。将一个数字表示成 (a×10的n次幂的形式),其中1≤|a|<10,n 表示整数,这种记数方法叫科学记数法。数字很大的数,一般我们用科学记数法表示,例如6230000000000;我们可以用6.23×10^12表示,而它含义是什么呢?从直面上看是将数字6.23中6后面的小数点向右移去12位。 若将6.23×10^12写成6.23E12,即代表将数字6.23中6后面的小数点向右移去12位。有效数字是指从左面不为0的数开始
例如:890314000保留三位有效数字为8.90*10的8次方
839960000保留三位有效数字为8.40*10的8次方
0.00934593保留三位有效数字为9.35*10的-3次方
0.004753=4.753*1/1000=4.753*10的负三次方
D. 世界上最早的0到9这十个数学符号,使十进一法完备起来的国家是什么
十进制数是组成以10为基础的数字系统,有0,1,2,3, 4, 5, 6, 7, 8, 9十个基本数字组成。十进制 首先,现在人们日常生活中所不可或离的十进位值制,就是中国的一大发明。至迟在商代时,中国已采用了十进位值制。从现已发现的商代陶文和甲骨文中,可以看到当时已能够用一、二、三、四、五、六、七、八、九、十、百、千、万等十三个数字,记十万以内的任何自然数。这些记数文字的形状,在后世虽有所变化而成为现在的写法,但记数方法却从没有中断,一直被沿袭,并日趋完善。十进位值制的记数法是古代世界中最先进、科学的记数法,对世界科学和文化的发展有着不可估量的作用。正如李约瑟所说的:“如果没有这种十进位制,就不可能出现我们现在这个统一化的世界了。” 古巴比仑的记数法虽有位值制的意义,但它采用的是六十进位的,计算非常繁琐。古埃及的数字从一到十只有两个数字符号,从一百到一千万有四个数字符号,而且这些符号都是象形的,如用一只鸟表示十万。古希腊由于几何发达,因而轻视计算,记数方法落后,是用全部希腊字母来表示一到一万的数字,字母不够就用加符号“‘”等的方法来补充。古罗马采用的是累积法,如用ccc表示300。印度古代既有用字母表示,又有用累积法,到公元七世纪时方采用十进位值制,很可能受到中国的影响。现通用的印度——阿拉伯数码和记数法,大约在十世纪时才传到欧洲。 在计算数学方面,中国大约在商周时期已经有了四则运算,到春秋战国时期整数和分数的四则运算已相当完备。其中,出现于春秋时期的正整数乘法歌诀“九九歌”,堪称是先进的十进位记数法与简明的中国语言文字相结合之结晶,这是任何其它记数法和语言文字所无法产生的。从此,“九九歌”成为数学的普及和发展最基本的基础之一,一直延续至今。其变化只是古代的“九九歌”从“九九八十一”开始,到“二二如四”止,而现在是由“一一如一”到“九九八十一”。 十进制的使用 《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万。甲骨卜辞中还有奇数、偶数和倍数的概念。 十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百。这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用。 我们有个成语叫"屈指可数",说明古代人数数确实是离不开手指的,而一般人的手指恰好有十个。因此十进制的使用似乎应该是极其自然的事。但实际情况并不尽然。在文明古国巴比伦使用的是60进位制(这一进位制到现在仍留有痕迹,如一分=60秒等)另外还有采用二十进位制的。古代埃及倒是很早就用10进位制,但他们却不知道位值制。所谓位值制就是一个数码表示什么数,要看它所在的位置而定。位值制是千百年来人类智慧的结晶。零是位值制记数法的精要所在。但它的出现却并非易事。我国是最早使用十进制记数法,且认识到进位制的国家。我们的口语或文字表达的数字也遵守这一原则,比如一百二十七。同时我们对0的认识最早。 十进制是中国人民的一项杰出创造,在世界数学史上有重要意义。着名的英国科学史学家李约瑟教授曾对中国商代记数法予以很高的评价,"如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了",李约瑟说"总的说来,商代的数字系统比同一时代的古巴比伦和古埃及更为先进更为科学。" 十进制,英文名称为Decimal System,来源于希腊文Decem,意为十。十进制计数是由印度教教徒在1500年前发明的,有阿拉伯人传承至11世纪。 十进制基于位进制和十进位两条原则,即所有的数字都用10个基本的符号表示,满十进一,同时同一个符号在不同位置上所表示的数值不同,符号的位置非常重要。基本符号是0到9十个数字。要表示这十个数的10倍,就将这些数字右移一位,用0补上空位,即10,20,30,...,90;要表示这十个数的10倍,就继续左移数字的位置,即100,200,300,...。要表示一个数的1/10,就右移这个数的位置,需要时就0补上空位:1/10位0.1,1/100为0.01,1/1000为0.001。--摘自《统计学》附录3 数学基础知识P205-6 [英]提姆.汉拿根 2008.1 另外同人游戏《东方红魔乡》一面BOSS露米娅的绰号为“十进制”,出处为魔理沙线的对话:“为什么总是伸直手臂?”“像不像耶稣被钉在十字架上?”“像是人类采用了十进制”
E. 哪个国家是数学国
数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
中国古代数学的萌芽
原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。
西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。
商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。
公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。
春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。
战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。
而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。
墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。
名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。
中国古代数学体系的形成
秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学着作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名着。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
《九章算术》有几个显着的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。
这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。
《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。
中国古代数学的发展
魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。
刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学着作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。
刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。
东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。
据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久;
祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是着名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。
隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。
唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典着作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。
算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。
唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。
中国古代数学的繁荣
960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。
从11~14世纪约300年期间,出现了一批着名的数学家和数学着作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。
从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。
把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。
秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。
元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星”题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。
用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术着作是李冶的《测圆海镜》。
从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。
朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。
勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。
已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。
中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。
宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。
中西方数学的融合
中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。
16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。
从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。
随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的着作在国内外流传很广,影响很大。
1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。
在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译着作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。
其次应用最广的是三角学,介绍西方三角学的着作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。
1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所着《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。
清初学者研究中西数学有心得而着书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学着作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的着作。
清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些着作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙“御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文着作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学网络全书,并有康熙“御定”的名义,因此对当时数学研究有一定影响。
综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。
雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。
随着《算经十书》与宋元数学着作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。
与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记—《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学着作传世的不足50人),和明末以来介绍西方天文数学的传教士41人。这部着作全由“掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术界颇有影响。
1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学着作。
其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。
《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所着的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译着中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些着作便成为主要教科书。
在翻译西方数学着作的同时,中国学者也进行一些研究,写出一些着作,较重要的有李善兰的《《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。
由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。
中国古代数学家——刘徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.
刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.
刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.
中国古代数学家——祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,其中355/133取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国着名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
F. 与埃及并称为四大文明古国的还有哪些国家
古埃及(尼罗河流域)
古巴比伦(两河流域及幼发拉底河和底格里斯河)
古印度(恒河流域)
古中国(长江黄河流域)
四个国家因为历史悠久,各自形成了一个重要的文化圈,其文化、宗教、建筑、绘画等影响力巨大,所以称为四大文明古国
G. 除了古埃及象形数字,玛雅数字,中国算筹数码外,历史上其它国家的计算方法有哪些
FT13706091482
LV.6 2015-09-29
还有古印度的锲形文字,和古印度发明的阿拉伯数字。 4399 满意请采纳,谢谢
H. 世界上数学最好的国度是哪个国家。
现在数学的国际中心在美国,百年以前是欧洲的德国和法国是国际数学中心。俄罗斯的数学始终是自成一派,但不能成为数学中心。牛顿时代当然是英国。
I. 数学好像每个国家都在学,它是哪个国家发明的
阿拉伯数字是印度人发明的。
公元771年,印度的一位旅行家毛卡经过长途跋涉,来到了阿拉伯帝国阿拔斯王朝首都巴格达。毛卡把随身携带的一部印度天文学着作《西德罕塔》,献给了当时的哈里发(国王)曼苏尔。曼苏尔十分珍爱这部书,下令翻译家将它译为阿拉伯文。译本取名《信德欣德》。这部着作中应用了大量的印度数字。由此,印度数字便被阿拉伯人吸收和采纳。
此后,阿拉伯人逐渐放弃了他们原来作为计算符号的28个字母,而广泛采用印度数字,并且在实践中还对印度数字加以修改完善,使之更便于书写。这就是数字的由来。
(9)古国的数学表示方法还有哪些国家扩展阅读:
数字文化:
在中国古代思想中,3为基数,9为极数,除了5和3、9外,12在古代文化中也有重要的地位,在我们的生活中除了五行、五味、五脏、五色等和5有关的物质外,还有很多和12有关的。
如12生肖、12时辰、12个月……这种思想在麻将中也得到了充分的体现,144是12的平方,108也是12的倍数。另外,在麻将规则中,规定每人抓13张牌,而13乘以4等于52,这正暗合了一年有52个星期的规律。反映了物质的存在形式,数字则代表了物质存在的数量。
J. 每个国家古代的计数方法
古时候人们计数的方法各国都不一样。列举以下几个:
1、中国古代的计数系统
中国在三千多年前的商代,已经建立起了完整的十进制系统,自从发明了算筹这种计算工具以后,中国人的计数系统有了很大的进步。在两千多年前的春秋战国时期,算筹在中国人手里已经使用得非常普遍了。算筹就是一种细竹棍,它表示数字1——9有两种方式:
纵式、横式。
表示多位数字的方法是纵横相间,这就避免了符号不独立可能引起的混乱,例如22837的表示法是。由此可知,中国古代的计数系统是典型的十进位值制。
算”的原意就指的是算筹,中间的“目”表示桌上摆放若干根算筹,下面“艹”是支架,上面“&<1950;”表示它的质料。与算、筹同义的字还有“策”,古书称“木细枝为策”,因此运筹、运算、计策、计算等在古代是近义词。
《史记·张良》中有“运筹策帷幄之中,决胜于千里之外”的说法,说明当时军事家在指挥一场战役之前,在帐中也要用算筹作为工具进行计算和谋划。
事实上,采用几作进位制是不重要的,重要的是要有位值制概念。巴比伦人和玛雅人有位值制概念,却都不是十进制;古埃及和古希腊是十进制,却都没有位值制,只有中国是最早采用十进位值制的国家。
英国着名科学史家李约瑟曾说:“如果没有这种十进位值制,就几乎不可能出现我们现在这个统一化的世界了。”因此,首创十进位值制,是中国古代人民对世界做出的一项不可磨灭的贡献。
2、古埃及在三千多年前的计数法如下
例如258写作。这种计数法是十进制的,但没有位值制;就以上符号而言,最大只能表示99999,而且写起来非常麻烦,我们现在只用5个符号就能表示的数字99999,他们却要用45个符号。
3、古希腊人的计数系统
古希腊人的计数系统是十进制,但没有位值制概念。他们用27个古希腊字母α、β、γ等在其上画一横杠来表示数字,前9个字母分别表示1——9,中间9个字母表示10——90,后9个字母表示100——900,按这种方式最大只能表示999。
为了表示更大的数目,他们又引进新的计数符号。这种计数系统十分复杂,但由于没有引进位值制,所以它无法保证任意大的数目都有相应的符号。
阿拉伯数字的起源:
公元500年前后,随着经济、种姓制度的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。
这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是阿拉伯数字的老祖先了。
阿拉伯数字使用注意事项:
阿拉伯数字容易通过改变小数点位置而产生变化。所以在特殊场合(如银行)不能完全替代大写的汉字。
阿拉伯数字使用规则:
在科技书刊中,阿拉伯数字因其“笔画简单、结构科学、形象清晰、组数简短”等特点,有着很高的使用频率,其用法是否正确及规范,直接关系到科技期刊的质量。
印度数字:
公元3世纪,古印度的一位科学家巴格达发明了阿拉伯数字。最古的计数目大概至多到3,为了要设想“4”这个数字,就必须把2和2加起来,5是2加2加1,3这个数字是2加1得来的,大概较晚才出现了用手写的五指表示5这个数字和用双手的十指表示10这个数字。
这个原则实际也是数学计算的基础。罗马的计数只有到Ⅴ(即5)的数字,Ⅹ(即10)以内的数字则由Ⅴ(5)和其它数字组合起来。Ⅹ是两个Ⅴ的组合,同一数字符号根据它与其他数字符号位置关系而具有不同的量。
这样就开始有了数字位置的概念,在数学上这个重要的贡献应归于两河流域的古代居民,后来古鳊人在这个基础上加以改进,并发明了表达数字的1,2,3,4,5,6,7,8,9,0十个符号,这就成为记数的基础。八世纪印度出现了有零的符号的最老的刻版记录。当时称零为首那。
两百年后,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度,西从非洲到西班牙的阿拉伯帝国。后来,这个伊斯兰大帝国分裂成东、西两个国家。
由于这两个国家的各代君王都奖励文化和艺术,所以两国的首都都非常繁荣,而其中特别繁华的是东都——巴格达,西来的希腊文化,东来的印度文化都汇集到这里来了。阿拉伯人将两种文化理解消化,从而创造了独特的阿拉伯文化。
大约700年前后,阿拉伯人征服了旁遮普地区,他们吃惊地发现:被征服地区的数学比他们先进。于是设法吸收这些数字。
771年,印度北部的数学家被抓到了阿拉伯的巴格达,被迫给当地人传授新的数学符号和体系,以及印度式的计算方法(用的计算法)。由于印度数字和印度计数法既简单又方便,其优点远远超过了其他的计算法,阿拉伯的学者们很愿意学习这些先进知识,商人们也乐于采用这种方法去做生意。
后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由教皇热尔贝·奥里亚克传到欧洲其他国家。公元1200年左右,欧洲的学者正式采用了这些符号和体系。
至13世纪,在意大利比萨的数学家费婆拿契的倡导下,普通欧洲人也开始采用阿拉伯数字,15世纪时这种现象已相当普遍。那时的阿拉伯数字的形状与现代的阿拉伯数字尚不完全相同,只是比较接近而已,为使它们变成1、2、3、4、5、6、7、8、9、0的书写方式,又有许多数学家花费了不少心血。