① 什么是数学三种语言
数学语言是进行数学思维和数学交流的工具,根据外部特征,可以分为三种:文字语言,图形语言和符号语言。数学语言的掌握是一个人数学能力和数学素养的主要反映。
数学考试中的阅读题,就是主要考查学生语言的掌握情况。但学生往往在解答这种类型的题时,有的不知道怎样解答,有的不知道怎样阐述,有的知其然不知其所以然,究其原因,主要在于数学语言的掌握较差。因此,在数学教学中,要加强对三种语言的理解。下面浅谈一下我在教学中的做法,供大家参考。
1.文字语言的理解。数学文字语言的特征是精练、严密。在教学中,应遵循教师是学生学习的促进者、引导者、合作者的思想,加强学生对文字语言的理解训练,帮助学生提高文字语言的理解能力。
1.1 运用比较法理解。教学中把要学的新知识与已经学习过的知识中易混淆的地方加以对比,帮助理解。如:学习“空间向量的分解定理”时,可以与“平面向量的分解定理”对比,相同点都是对“任意向量”“唯一”地线性表出,不同点是:①共面与共线;②有序实数对与三元有序数组。又比如比较互补、邻补、同旁内角互补等,都是位置不同,而数量和相同。
1.2 扩句、缩句帮助理解。在教学过程中,对精练的文字,特别是定义、公理、定理,可借助于扩句或缩句来帮助学生理解。如“对顶角相等”扩成“如果两个角是对顶角,那么这两个角相等”,这样学生就明白了条件和结论。有时可以缩句理解,如数轴定义,可这样理解:“(规定了原点,单位长度和正方向的)直线叫数轴”。不是任意直线,而是要有三要素,从而让学生掌握数轴的概念。
1.3 多角度理解。多角度理解,可以让学生全面理解知识、掌握知识。如“两条直线垂直的充分必要条件”是什么,可从所成的角度上理解,也可从两条直线方程的一般式理解,还可从两条直线的斜截式去理解。多角度的再现强化理解,激活思维,培养发散思维能力。
1.4 译成符号语言、图形语言理解。几何式的定义、定理的结论,采用这种方法,能让学生一目了然,同时这也是解答文字语言证明题的必然方法,如:画出符合题意的图形,结合图形将条件和结论用符号语言表出。
1.5 可举例、打比方理解。举实例打比方,可使抽象的、深奥的东西具体化、浅显化。如讲集合概念时,先讲后举例,如:一个班的学生,一个学校所有的班级等。
2.图形语言的理解。
2.1 识图:要能够从复杂的图形中识别图形,哪些是有关的,哪些是无关的。如在正方体ABCD-A1B1C1D1中,A1C和D1B是什么位置关系?又如(如图所示)平面ADC⊥平面ABC,且∠ADC=∠ACB=90°,AD=CD=a,AB=2a,求A-DB-C。在弄清A-DB-C的基础上求平面ADB与平面CDB所成的角,同时从平面ADC⊥平面ABC,结合条件去探究结论。当然也可以从图形的平移、翻折、旋转去培养认识图形能力。
2.2 作图:作图是对图形语言的书写,从模仿到独立完成。
3.符号语言的理解。符号语言具有高度的概括性、抽象性,应从抓特征上促进学生理解。
3.1 弄清符号语言的含义是关键。必须知道符号语言的含义,否则见面不相识,束手无策。同时还要归类,便于掌握。如数集中的实数集、正实数集、非零实数集、正整数集等,而且还要引导学生从读法上去区分,从而掌握。如-a2与(-a)2的读法,只有掌握了符号语言的含义,学生才能提高对符号语言的辨析能力和运用能力。
3.2 抓住符号语言的特征。抓住符号语言的特征是消除干扰的关键,如 的特征,又如CUAUB与CU(AUB)的特征,如果不搞清楚的话,就会混淆。如(a+b)2=a2+b2,sin(A+B)=sinA+sinB,这样的错误就是本质特征没有搞清楚。所以既要强调外部特征,又要强调本质特征,把语言的理解和能力培养有机地结合起来。
② 小学数学中常用的数学逻辑语言有哪些
是不是大于小于等于。。。。
③ 数学语言的三种形式
数学语言是数学思维的载体,数学学习实质上是数学思维活动,交流是思维活动中重要的环节,因此《课标》指出“动手实践、自主探索与合作交流是学生学习数学的重要形式”,联合国教科文组织将有效的数学交流作为学习数学的目标之一,实现有效交流的前提是学习和掌握数学语言。
数学语言可分为 抽象性数学语言和 直观性数学语言,包括 数学概念、 术语、 符号、式子、图形等。数学语言又可归结为 文字语言、符号语言、图形语言三类。各种形态的数学语言各有其优越性,如概念定义严密,揭示本质属性;术语引入科学、自然,体系完整规范;符号指意简明,书写方便,且集中表达数学内容;式子将关系溶于形式之中,有助运算,便于思考;图形表现直观,有助记忆,有助思维,有益于问题解决。
数学语言作为数学理论的基本构成成分,具有“ 高度的抽象性、严密的逻辑性、应用的广泛性”。简单地讲,数学语言科学、简洁、通用。
数学语言作为一种表达科学思想的通用语言和数学思维的最佳 载体,包含着多方面的内容;其中较为突出的是叙述语言、符号语言及图形语言,其特点是准确、严密、简明。由于数学语言是一种高度抽象的人工符号系统,因此,它常成为数学教学的难点。一些学生之所以害怕数学,一方面在于数学语言难懂难学,另一方面是教师对数学语言的教学不够重视,缺少训练,以致不能准确、熟练地驾驭数学语言。现笔者根据数学语言的特点及数学要求,谈谈自己的认识。
④ 什么叫做数学语言
数学语言是数学思维的载体,数学学习实质上是数学思维活动,交流是思维活动中重要的环节,因此《课标》指出“动手实践、自主探索与合作交流是学生学习数学的重要形式”。
联合国教科文组织将有效的数学交流作为学习数学的目标之一,实现有效交流的前提是学习和掌握数学语言。
(4)数学语言有哪些扩展阅读:
一、特点
数学语言可分为抽象性数学语言和直观性数学语言,包括数学概念、术语、符号、式子、图形等。数学语言又可归结为文字语言、符号语言、图形语言三类。
各种形态的数学语言各有其优越性,如概念定义严密,揭示本质属性;术语引入科学、自然,体系完整规范;符号指意简明,书写方便,且集中表达数学内容;式子将关系溶于形式之中,有助运算,便于思考;图形表现直观,有助记忆,有助思维,有益于问题解决。
数学语言作为数学理论的基本构成成分,具有“高度的抽象性、严密的逻辑性、应用的广泛性”。简单地讲,数学语言科学、简洁、通用。
二、心理过程
是指学生从学习数学语言到掌握数学语言的过程,这种过程往往是因人而异。数学符号和规则从现实世界得到其意义,又在更大的范围内作用于现实。
学生只有在理解数学语言的来龙去脉及意义,而且熟练地掌握他们的各种用法,从而得到理性的认识之后,在数学学习中才能灵活地对它们进行各种等价叙述,并在一个抽象的符号系统中正确应用,从而达到对数学符号语言学习的最高水平。
⑤ 小学数学语言技能的组成内容有哪些
数学语言技能 1、板书、绘图、绘画技能 2、教学设计技能 3、教学研究技能 4、使用教学媒体技能.
⑥ 数学语言有哪些
数学语言可分为抽象性数学语言和直观性数学语言,包括数学概念、术语、符号、式子、图形等。数学语言又可归结为文字语言、符号语言、图形语言三类。各种形态的数学语言各有其优越性,如概念定义严密,揭示本质属性;术语引入科学、自然,体系完整规范;符号指意简明,书写方便,且集中表达数学内容;式子将关系溶于形式之中,有助运算,便于思考;图形表现直观,有助记忆,有助思维,有益于问题解决。
⑦ 数学课堂幽默语言集锦方言有哪些
有一次,9轻蔑地对0说:“你的本领,只有0.”0低着头,恭敬回答说:“我承认.您真使我钦佩,因为,你的本领,是我的一万倍(即0×10000).”9得意地昂首阔步,不过,却引来其它数字哈哈大笑。
数学家、生物学家和物理学家坐在街头的咖啡屋里,看着人们从街对面的一间房子进进出出.他们先看到两个人进去,过了一会,他们又看到三个人出来.物理学家:“测量不够准确.”生物学家:“他们进行了繁殖.”数学家:“如果现在再进去一个人,那房子就空了.”
一位农夫请了工程师、物理学家和数学家来,想用最少的篱笆围出最大的面积.工程师用篱笆围出一个圆,宣称这是最优设计.物理学家将篱笆拉开成一条长长的直线,假设篱笆有无限长,认为围起半个地球总够大了.数学家嘲笑了他们一番.他用很少的篱笆把自己围起来,然后说:“我现在是在外面.”
一天,数学家觉得自己受够了数学,于是他跑到消防队去应聘消防员.消防队长说:“您看上去不错,可是我得先给您一个测试.”消防队长带数学家到消防队后院小巷,巷子里有一个货栈,一只消防栓和一卷软管.消防队长问:“假设货栈起火,您怎么办?”数学家回答:“我把消防栓接到软管上,打开水龙,把火浇灭.”消防队长说:“完全正确!最后一个问题:假设您走进小巷,而货栈没有起火,您怎么办?”数学家疑惑地思索了半天,终于答道:“我就把货栈点着.”消防队长大叫起来:“什么?太可怕了!您为什么要把货栈点着?”数学家回答:“这样我就把问题化为一个我已经解决过的问题了.”
英国诗人捷尼逊写过一首诗,其中几行是这样写的:“每分钟都有一个人在死亡,每分钟都有一个人在诞生……”有个数学家读后去信质疑,信上说:“尊敬的阁下,读罢大作,令人一快,但有几行不合逻辑,实难苟同.根据您的算法,每分钟生死人数相抵,地球上的人数是永恒不变的.但您也知道,事实上地球上的人口是不断地在增长.确切地说,每分钟相对有1.6749人在诞生,这与您在诗中提供的数字出入甚多.为了符合实际,如果您不反对,我建议您使用53这个分数,即将诗句改为:每分钟都有一个人在死亡,每分钟都有一又三分之二人在诞生……”
⑧ 数学语言分别有哪些
数学语言可分为抽象性数学语言和直观性数学语言,包括数学概念、术语、符号、式子、图形等。数学语言又可归结为文字语言、符号语言、图形语言三类。
复制于网络
⑨ 数学语言是什么
数学语言是数学思维的载体,数学学习实质上是数学思维活动,交流是思维活动中重要的环节,因此《课标》指出“动手实践、自主探索与合作交流是学生学习数学的重要形式”,联合国教科文组织将有效的数学交流作为学习数学的目标之一,实现有效交流的前提是学习和掌握数学语言。
⑩ 数学语言技能的组成内容有哪些
数学语言技能的组成内容有:
1.语音
基本要求:规范化
常见问题:方言,平卷舌,数学字母发音
2.音量
基本要求:声音大小适中,最后一排同学听清楚
常见问题:声音小,声音大
解决方法:练习用气发音
3.语速
基本要求:讲话速度与内容难易程度,学生接受能力保持一致
常见问题:过快,过慢
解决方法:熟悉内容,250字/分钟;不熟悉内容,100字/分钟
4.声调
基本要求:声音高低变化形成和谐的节奏
常见问题:平淡,没有感情
解决方法:为引起学生注意,慢速并提高声音,或降低声音;和学生进行感情交流。有疑问,感叹,惊喜,深思,肯定等语气。
5.语汇词汇
基本要求:具备一定的词汇量和专业语言词汇
常见问题:语言不规范,用词不准确
解决方法:词汇应规范,准确,形象,生动,符合语法,有逻辑性,从而思路清晰明确,语言连贯。
(10)数学语言有哪些扩展阅读:
数学语言的特点:
数学语言可分为抽象性数学语言和直观性数学语言,包括数学概念、术语、符号、式子、图形等。数学语言又可归结为文字语言、符号语言、图形语言三类。各种形态的数学语言各有其优越性,如概念定义严密,揭示本质属性;术语引入科学、自然,体系完整规范;符号指意简明,书写方便,且集中表达数学内容;式子将关系溶于形式之中,有助运算,便于思考;图形表现直观,有助记忆,有助思维,有益于问题解决。
数学语言作为数学理论的基本构成成分,具有“高度抽象性、严密的逻辑性、应用的广泛性”。简单地讲,数学语言科学、准确、严密、简洁、通用。