Ⅰ 数学比较难的题目有哪些
11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国着名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。 高速数字计算机的发明,促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。 他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素。 电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。 这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。 “四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。 不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法。 哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。 1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。 这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。 从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。 中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。”通常这个结果表示为 1+2。这是目前这个问题的最佳结果。
Ⅱ 三大数学难题有哪些
世界三大数学难题即费马猜想、四色猜想和哥德巴赫猜想。
1、费马猜想:
当整数n > 2时,关于x,y,z的不定方程 x^n + y^n = z^n 无正整数解。
2、四色问题
任何一张平面地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。用数学语言表示,即将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。
3、哥德巴赫猜想
1742年6月7日,德国数学家哥德巴赫在写给着名数学家欧拉的一封信中,提出了一个大胆的猜想:任何不小于3的奇数,都可以是三个质数之和(如:7=2+2+3,当时1仍属于质数)。同年,6月30日,欧拉在回信中提出了另一个版本的哥德巴赫猜想:任何偶数,都可以是两个质数之和。
(2)数学有哪些难的扩展阅读
“a + b”问题的推进
1920年,挪威的布朗证明了“9 + 9”。
1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。
1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。
1940年,苏联的布赫夕太勃证明了“4 + 4”。
1956年,中国的王元证明了“3 + 4”。稍后证明了 “3 + 3”和“2 + 3”。
1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
Ⅲ 大学数学那些最难学数学资料
微积分不难,几个公式背熟,多做些题目,就会有感觉的,祝你学业有成哈。。
Ⅳ 世界十大数学难题有哪些
难题”之一:P(多项式算法)问题对NP(非多项式算法)问题
难题”之二: 霍奇(Hodge)猜想
难题”之三: 庞加莱(Poincare)猜想
难题”之四: 黎曼(Riemann)假设
难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口
难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
难题”之八:几何尺规作图问题
难题”之九:哥德巴赫猜想
难题”之十:四色猜想
Ⅳ 小学数学的难点有哪些
其实很简单,只要上课听懂重点有三个一个是代数,第二个平面几何和立体几何,第三个是统计与一些杂题
Ⅵ 初二的数学那些最难
初二上学期没什么难的。下学期:
分式:这个不怎么难,就是做混合运算的时候要仔细。还有分式方程记得检验,这章只要因式分解的基础扎实,很简单。
反比例函数:也没啥难,这章最难的就是一次函数、反比例函数画在一个坐标系中,问当x(横坐标)是多少时一次函数大于反比例函数,这个一般有两段
勾股定理:这个比较难了。难的题有最短距离(立体图形上),例如求长方体上A——B最短距离,要把长方体展开,再连接AB求,涉及到根号,比较难。
四边形:推理能力好简单
Ⅶ 世界上最难的数学题有哪些
规尺作图三大难题:
1.三等分任意角.
2.倍立方体,即作一个体积是给立方体体积2倍的立方体.
3.化圆为方,即作出与给定圆面积相等的正方形。
Ⅷ 数学有哪些最难的脑筋急转弯
答:数学中的那此最难的就是答案了。
Ⅸ 数学最难学知识是哪个
我认为数学最难的知识就是高中数学几何最变态也是最稳定猥琐(因为不管是选择题,填空题还是大题都很猥琐)的——平面解析几何。(不等式+数列难在思路,而解析几何在于难算。很多时候你知道怎么算就是没办法写下去,太费墨水了!太费草稿纸了!)
传说很难的——立体几何。如果空间思维好,就一般方法,如果不好,就空间向量看着办吧。不过立体几何属于刚开始接触很吃力,习惯就好。
最需要实力的(我认为)——排列组合。它属于考试一般(看什么地区,像天津卷就难得吐血)平时很伤自尊的。因为你可以算出来,但是和答案就是有差距。
高中的数学和初中的数学最大的差别就是系统性,高中的数学都是非常系统的,所以会导致漏前段便不懂后段。关于笨不笨其实不是很大的问题。能够正常考上高中的智力都是正常的。解决这些问题最主要的就是抓基础。要回归课本。不要轻视课本,觉得课本上的东西很简单而不愿意去学或写,其实大多数的题目都是由课本上的题目改编而来。
而且进入高中以后,课本上题目的难度和初中上课本题目的难度完全不是一个等级的,很多课本题目还是非常难而值得一写的。一时的吃力不代表永远的吃力,你要相信自己,数学本来就不是很简单的一门学问,初中的东西其实很少而且很简单,所以不要放弃,而且同学们都懂了你不懂这是不可能的,其实同学中不乏沉默的大多数,这些不懂却装懂或者完全放弃的人还是有很多的,要学会向老师请教,相信自己不要放弃,多多练习,相信你会克服一时的困难的。
所以对于数学知识来讲最难掌握的就是上面的就提到了高中的一些知识,只要用心的去钻研,一定会取得好成绩的。
Ⅹ 最难的数学题以及答案是什么
什么哥德巴赫猜想,黎曼猜想,孪生素数猜想,确实是最难的。但这些又没有答案,不能算是题!
在这,我向题主介绍一个极具趣味数学题《九方集》:
数学趣题《九方集》
该题绝对很难,在答案公布前,几乎无人能证明。
但答案公布后,所有人又豁然开朗。
所以非常具有趣味性!!!