㈠ 高中必修一数学,集合如何学好,教我。
集合的题目比较灵活,要记好那几个集合公式,刚学的时候去做一些基本的题目,过一段时间以后,可以去做一些灵活缓衡的返哪配题目,有助于你更快的记住并运用好那几个集合公式。希望我们的回答对你用所帮助、望楼主采纳、谢谢。这里是四海游龙漏指团队为你解答。
㈡ 高中数学集合知识点大全
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。下面我给大家分享一些高中数学集合知识点大全,希望能够帮助大家,欢迎阅读!
目录
高中数学集合知识点
高中数学学习方法
高中数学考试答题技巧
高中数学集合知识点
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示 方法 :常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,贺闭衡则A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)补集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,则? A ;
②若 , ,则 ;
③若 且 ,则A=B(等集)
3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与 的区别;(3) 与 的区别。
4.有关子集的几个等价关系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集运算的性质
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
>>>
高中 数学 学习方法
1、 课前预习 能提高听课的针对性。
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。
2、听课态启过程中的科学。
首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的 体育运动 或看小书、下棋、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。
其次就是听课要全神贯注。
全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。
耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳 总结 ,另外,还要听同学们的答问,看是否对自己有所启发。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势等动作,生动而深刻的接受老师所要表达的思想。
心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点禅做,解决疑难的。
口到:就是在老师的指导下,主动回答问题或参加讨论。
手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有 创新思维 的见解。
若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。
3、特别注意讲课的开头和结尾。
讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。
>>>
高中数学考试答题技巧
掌握时间
由于,基础中考能力,所以要注重解题的快法和巧法,能在30分钟左右,完成全部的选择填空题,这是夺取高分的关键。在平时当中一定要求自己选择填空一分钟一道题。用数学思想方法高速解答选择填空题。
先易后难
所以,只做选择,填空和前三道大题是不够全面的。因为,后“三难”题中的容易部分比前面的基础部分还要容易,所以我们应该志在必得。在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。这样,你的总分就可以超过130分,向145分冲刺。
后三题尽量多得分
第二段是解答题的前三题,分值不到40分。这样前两个阶段的总分在110分左右。第三段是最后“三难”题,分值不到40分。“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。后3题不是只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分。
>>>
高中数学集合知识点大全相关 文章 :
★ 高一数学集合知识点及例题分析
★ 高一数学集合知识点汇总(2)
★ 高一数学必修一集合公式知识点与学习方法
★ 高中数学全部知识点提纲整理
★ 高中数学必考知识点归纳整理
★ 高中数学知识点重点总结大全
★ 高中数学知识点总结归纳最新
★ 高一数学知识点汇总大全
★ 高一数学知识点全面总结
★ 高一数学必修一知识点整理大全
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();㈢ 高一集合学习方法和必记公式
集合是近代数学中的一个重要概念,它不仅与高中数学的许多内容有着紧密的联系,而且已经渗透到自然科学的众多领域,应用十分广泛。掌握好集合的知识既是数学学习本身的需要,也是全面提高数学素养的颂胡一个必不可少的内容。进入高中,学习数学的第一课,就是集合。由于集合单元的概念抽象,符号术语多,研究方法跟学习初中数学时有着明显的差异,致使部分同学初学集合时,感到难以适应,常常因为这样那样的原因造成解题失误,形成思维障碍,甚至影响整个高中数学的学习。为了帮助同学们解决这一问题,本文谈谈在集合学习中值得注意的几个事项,供大家参考。
一、准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题
概念抽象、符号术语多是集合单元的一个显着特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。这些概念、关系和表示方法,都可以作为求解集合问题的依据、出发点甚至是突破口。因此,要想学好集合的内容,就必须在准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题上下功夫。
二、注意弄清集合元素的性质,学会运用元素分析法审视集合的有关问题
众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。集合中的元素具有“三性”:
(1)、确定性:集合中的元素应该是确定的,不能模棱两可。
(2)、互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个。
(3)、无序野衫拦性:集合中的元素是无次序关系的。
集合的关系、集合的运算等等都是从元素的角度予以定义的。因此,求解集合问题时,抓住元素的特征进行分析,就相当于牵牛抓住了牛鼻子。
三、体会集合问题中蕴含的数学思想方法,掌握解决集合问题的基本规律
布鲁纳说过,掌握数学思想可使得数学更容易理解和记忆,领会数学思想是通向迁移大道的“光明之路”。集合单元中,含有丰富的数学思想内容,例如数形结合的思想、分类讨论的思想、等价转化的思想、正难则反的思想等等,显得十分活跃。在学习过程中,注意对这些数学思塌瞎想进行挖掘、提炼和渗透,不仅可以有效地掌握集合的知识,驾驭 集合问题的求解,而且对于开发智力、培养能力、优化思维品质,都具有十分重要的意义。
四、重视空集的特殊性,防止由于忽视空集这一特殊情况导致的解题失误
空集是一个十分重要的特殊集合,它具备“空集虽空,但空有所为”的功能。在解题的过程中,要时刻注意有无可能存在空集的情况,否则极易导致解题失误。这一点,必须引起我们的高度重视
㈣ 高一数学必修一集合知识点总结
集合作为高中数学教材的第一章,它是一种数学语言,在后续的学习中是一种重要的工具。下面是我给大家带来的高一数学必修一集合知识点总结,希望对你有帮助。
高一数学必修一集合知识点
集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。
雀吵集合,在数学上是一个基础概裂梁念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
元素与集合的关系
元素与集合的关系有“属于”与“不属于”两种。
集合与集合之间的关系
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。‘说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个≠符号(如右图),不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。’
集合的几种运算法则
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元差集表示
素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”肆岁运(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因为A和B中都有1,5,所以A∩B={1,5}。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。图中的阴影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合
1再相乘。48个。对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种定义是:A?B=(A∪B)-(A∩B)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:AB={x│x∈A,x不属于B}。注:空集包含于任何集合,但不能说“空集属于任何集合”.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集也被认为是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。在信息技术当中,常常把CuA写成~A。
集合元素的性质
1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。3.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。4.无序性:{a,b,c}{c,b,a}是同一个集合。5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x<2},集合A中所有的元素都要符合x<2,这就是集合纯粹性。6.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。
集合有以下性质
若A包含于B,则A∩B=A,A∪B=B
集合的表示方法
集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。
常用的有列举法和描述法。1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0
4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N*(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。Q={p/q|p∈Z,q∈N,且p,q互质}(正负有理数集合分别记作Q+Q-)(5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律A∩B=B∩AA∪B=B∪A集合结合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合
㈤ 高中数学的集合怎么学
集合码银是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。
集合特性:
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出源模差现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关雹皮系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
㈥ 高一数学必修1集合怎么学好
数学是一门思维的科学,是高考的重要内容之一,要想学习好高中数学其实并不难。掌握学习方法就好了。以下是我分享给大家的高一数学必修1集合的学习的资料,希望可以帮到你!
高一数学必修1集合的学习
一、第一章节第一单元集合的课标要求:
1.合的含义与表示:
(1).了解集合的含义,体会元素与集合的属于关系
(2).能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
2.集合间的基本关系
(1).理解集合之间包含与相等的含义,能识别给定集合的子集.
(2).在具体情境中,了解全集与空集的含义.
3.集合的基本运算
(1).理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集合.
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
(3).能使用韦恩图表达集合间的基本关系及集合的基本运算.
二、第一章节第一单元集合的学习过程
本章知识分为三个小节。对于集合学习时,课堂上重视听课,也就 是紧跟老师的思路,积极展开思维预测与生成.课后复习不留疑点,认真独立完成作业,勤于思考,当然遇到不懂的问题要及时请教消化。在本单元知识学习上要注意如下几个问题:
1.元素与集合的表示法及它们之间的关系.
2.注意三种语言的相互转换.
3.对于集合之间的关系“包含”关系时,特别关注特殊集合.如空集,自然数集等.
4.对于集合的运算应当关注全集这一前提.遇到比较难于理解的题目时,我们经常运算“补集”来解决问题.
三、第一章节第一单元集合的学习方法
在学习集合过程中,方法特别重要.如“复习、预习、作业”三个环节紧紧相扣。当学习一个章节后,进行相应的巩固与拓展.建议在复习时画“知识树状图”,对于不同的题目应当提炼出相应的方法,再过度到数学思想的提升.
四、第一章节第一单元集合的知识拓展与生成
新知识的接受与数学能力的提升,均是通过数学知识的展开而生成,而数学知识的展开是借助于数学试题而显现的.所以我认为学习重要的是过程,即体验。数学体验的主要方式就是解题,所以下面根据自己的教学经验,以试题的形式,对本部分内容的知识进行拓展与生成.
高一数学必修1集合课标要求
1. 了角指数函数模型的背景,理解n次方根的概念;掌握n次根式的性质并运用其进行化简求值.
2. 理解分数指数幂的含义;掌握分数指数幂的运算性质.
3. 了解无理指数幂的含义;掌握分数指数幂与根式的互化;熟练运用有理数指数幂的运算性质进行化简、求值.
4. 理解指数函数的概念和意义,能画出指数函数的图像;掌握指数函数的性质.
5. 能用指数函数的图像、性质解决一些简单问题;初步会解与指数函数有关的复合函数的值域、单调性、奇偶性等问题.
高中数学学习方法
第一、转变观念,高一的课程内容不得懈怠
我想大家都明白数学的重要性吧。要知道,高考的成与败很大程度上取决于数学成绩的高与低。尤其是高一数学,经验告诉我们,高中阶段的数学学习规律是:“三年发展看高一,高一关键在‘一上’”。打好高一的数学基础,特别是开好“一上”,即高一上学期高中数学学习的“头”,对于顺利完成高中三年的数学学习,打好自己终生发展的基础极为重要。
第二、养成良好的数学学习习惯,主要注意以下几个环节
1.预习环节
课前预习能提高听课的针对性。高中数学与初中数学一个明显的不同是知识内容的“量”上急剧增加了,容量加大了,进度很快,经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,预习十分重要。应该在老师讲课之前通过自学,对有关知识做到心中有数,完成课后的相关练习。在预习过程中不理解的地方做个记号,这样听课效率就会高很多,不至于在课堂内一知半解。
2.听课环节
学生的学习主要在课堂,要学好数学,提高数学能力,关键在于提高听课效率:
①首先应做好课前的准备,要把课本、笔记本、草稿纸等放在桌子上,上课时不至于出现书、本等丢三落四的现象;
②听课重点听分析、思维方法,要全神贯注。全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻地接受老师所要表达的思想。心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。
口到:就是在老师的指导下,主动回答问题或参加讨论。手到:就是在听、看、想、说的基础上划出内容的重点,记下讲课的要点以及自己的感受或有创新思维的见解。
③特别注意老师讲课的开头和结尾
老师讲课开头,一般是概括前节课的要点,指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
④最后一点就是作好笔记,记笔记是学习过程中的重要环节,它对提高学习效益有不可低估的作用。俗话说“好记性不如烂笔头”。在听课的同时把本节课的重点、难点、典型的例题与教师在课堂中拓展的课外知识及习题记录下来,以备课后复习时用。
3.作业环节
先看笔记后做作业,作业要独立完成。发下去的作业,不是只注意勾勾叉叉,考试不是关注考多少分,而是对错题要做研究,找出错误的根源,并认真订正。另外,在准确把握住基本知识和方法的基础上,做一定量的练习题,因为没有一定量的练习就不能形成技能,数学离不开做题。无论是作业还是测验,都应把准确性放在第一位,通性通法放在第一位,不能一味地去追求速度或技巧,这是学好数学的重要方法。
4.复习环节
及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。课下首先要做的不是做作业,而是及时复习不留疑点。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书、笔记合起来回忆上课老师讲的内容,例题、分析问题的思路、方法等,尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,让当天上课内容巩固下来,该记的内容一定把它背熟,包括概念、图形、性质及规律和数学小结论等。
5.总结环节
归纳总结是必不可少的,总结的时候,应充分利用教材每章后面的复习小结,可以从基本知识和例题、习题进行总结,要多方位地去探索新旧知识之间的内在联系,从数学知识中提炼、概括出解决问题的一般方法,形成比较有序、完整的知识结构。
6.反思环节
经常在做题后进行一定的“反思”。通过反思,形成自己的通性、通法,就可以事半功倍,也就掌握了学习数学的技巧。用专业的语言说,就是提高了学生的数学转化能力,使其运用知识、解决问题的能力能够得以提升。
7.改错环节
一定要重视改错工作,做到错不再犯。具体措施可以建立数学纠错本。把平时容易出错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。如果能及时改错,那么错误就可能转变为财富,成为不再犯这种错误的预防针。但是,如果不能及时改错,这个错误就将形成一处隐患,一处“地雷”,迟早要惹祸。
猜你喜欢:
1. 如何学好高中数学 学好高中数学方法
2. 女生怎样学好数学的方法
3. 高一阶段数学学习常见问题及解决
4. 高中数学学习方法 如何学好高中数学
5. 孩子怎么学好高一数学