A. 数学分解因式应如何做才能更快捷的的解题
记住因式分解的步骤:一是先看能否用提公因式,再用公式法,用公式时看腔老多项式是两项式还是三项式,是两项式(就是可以写成A的平方-B的平方的形式)就备陆用平方差公伍滚升式,是三项式(写成A的平方±2AB+B的平方)就用完全平方公式.还要注意要分解到每个因式不能再分解为止.
B. 数学拆分法怎么做
第一种:数字分解
当滑动框滑到10之后,孩子可以直观看到,1对应9,8对应2,7对应3……以此类推,轻松掌握10以内的数字分解。
第二种:10以内的加减法
当滑动框滑到任意1个数字,比如说7,你可以告诉孩子,滑动框后面的1和6相加等于7,7减去6等于1,7减去1等于6;以此类推。
C. 数学分解法怎样分解,
(1)提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的~.
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
(2)运用公式法
①平方差公式:.a^2-b^2=(a+b)(a-b)
②完全平方公式:a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
(3)分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法.
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.
(4)拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的
原则进行变形.
※多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
(5)配方法:对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
(6)换元法:有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
(7)待定系数法:首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
D. 因式分解怎么做啊不会!
我的数学也不是很好,因式分解我有时也很迷茫,可我的老师告诉我们,做因式分解要有技巧,也要按照定义去做,送你四句话,也是我的老师给我们的:
首先提取公因式,
然后考虑用公式
分组分的要合适
结果必是连乘式
如果老师讲的少,你还可以试试自学!!
①如果多项式的裂念各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字迟灶相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止.
比如...x^2+6x-7这个式子肆旦困
由于一次幂x前系数为6
所以,我们可以想到,7-1=6
那正好这个式子的常数项为-7
因此我们想到将-7看成7*(-1)
于是我们作十字相成
x
+7
x
-1
的到(x+7)·(x-1)
E. 数学分解怎么教
幼儿园数学分解教法如下。
1、利用食物分解。
2、如一篮水果有5个,一个放在一个盘子里,另外四个放在一个盘子里。
3、让孩子发现5能分成1和4。
4、同样1和4能组成5。
5、还有5能分成2和3,3和2,4和1。
(5)数学的分解怎么做才能对扩展阅读
破十法:是一种计算方法,即:当个位不够减时,就用10减去减数,剩下的数和个位上的数相加,即破十法。
破十法口诀
十几减九,几加一;十几减七,几加三;十几减五,几加五;十几锋庆减三,几加七;十几减八,几加二;十几游携减六,几加四;十几减四,银磨握几加六;十几减二,几加八。
F. 数学的分解因式要咋做 怎么都不会
就是把多项式转化为几个单项式的乘积的形式
1,你在脑海里要验算一下,其实分解因式就是把单项式边变多项式换做多项式变单项式罢了。
先找公因式,就是有相同字母,相枯蠢同数字,相同指数的单虚皮项式,如 8x+4x²
这个可以提4(数字,8可以分为2×4,含4) x(这个都有的) 1次(指数最低)
组合就是4x
分解就是4x(2+x) 变成几个单项式的乘积的形式了
2,没誉陪用公式
平方差和完全平方
(不知道这个你熟不熟练,不懂可继续追问)
G. 数学因式分解的12种方法
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x -2x -x(2003淮安市中考题)
x -2x -x=x(x -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)
解:a +4ab+4b =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
解:m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 2
2-21=-19
解:7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
解方程依据
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;
2、等式的基本性质
性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。
(1)a+c=b+c
(2)a-c=b-c
性质2:等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:
a×c=b×c 或a/c=b/c
性质3:若a=b,则b=a(等式的对称性)。
性质4:若a=b,b=c则a=c(等式的传递性)。
H. 幼儿园数学分解方法容易记得的方法
1、幼儿园中班就学习10以内的分解,您只需要找十根小木棍或者同样的东西10个就可以了。
2、首先从2的分解开始来,拿两个一样的东西让幼儿数出来东西的数量,再把东西分开放,幼儿可以很清晰直观的看出来,2个东西是可以被分成1个和1个的,这就是2可以分解成1和1,然后反过来告诉幼儿1和1可以组成2,1+1=2。用实物摆放出来能更好的帮幼儿理解。
3、接下来就是3了,同样的拿出3个物品,一边放一个,剩下的放到另一边,也能很直观的看出一边是一个,另外一边是2个。于是3可以分解成1和2,1和2组成3,1+2=3。倒过来3先分解成2个,然后剩下的放另一边就是3的第二种分解方法,3还可以分解成2和1,2和1组成3,2+1=3。
4、每个数能被分解成比他本身数目少一种,也就是说2有一种分解,3有2种分解方法,4有3种分解方法,5有4种分解方法,以此类推。接下来我们分解数字4,首先还是左边放一个,其余的放到右边,不难数出右边有3个,4可以分解成1和3就完成了,再从右边拿走一个放到左边,就是4的第二种分解,我们看到两边这时一样多了,4可以分解成2和2,第三种便是再从右边拿走一个再放到左边,这时就可以看到4可以分解成3和1了。这时我们就总结出一个规律每个数字的左边都是从1开始的,右边是剩下的数量,然后每次都从右边拿走一个放到左边。
I. 如何巧做因式分解
把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式,和我们小学里学的因数分解很类似。
1、如果多项式的首项为负,应先提取负号;
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。
2、分解因式的结果必须是以乘积的形式表示。
3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止,就像把8进行因数分解的时候,不能写成8=2*4,这里的4还可以再分解成为2*2,所以要写成8=2*2*2。
5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;
6、括号内的首项系数一般为正;
7、如有单项式和多项式相乘,应把单项式提到多项式前。如ab+ac,因式分解时要写成a(b+c);
8、考试时一般就要化到实数,在实数范围内因式分解,因为在初中,实数范围是最大的。
口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
不叫提公因式,因为括号内不得用分数。
J. 数学因式分解怎么做,谁有方法..急急急...
http://ke..com/view/857429.htm
网络知识:
方法:
⑴提公因式法
各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出搏皮来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变者谈号。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。
例如:-am+bm+cm=-m(a-b-c);
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
注意:把2a+1/2变成2(a+1/4)不叫提公因式
⑵公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
平方差公式:a^2-b^2=(a+b)(a-b);
完全平方公式:a^2±2ab+b^2=(a±b)^2;
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
公式:a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)
例如:a ^2+4ab+4b^2 =(a+2b)^2。
(3)分解因式技巧
1.分解首银碰因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:
①等式左边必须是多项式;
②分解因式的结果必须是以乘积的形式表示;
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;
④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
3.提公因式法基本步骤:
(1)找出公因式;
(2)提公因式并确定另一个因式:
①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;
②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
[编辑本段]竞赛用到的方法
⑶分组分解法
分组分解是解方程的一种简洁的方法,我们来学习这个知识。
能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:
ax+ay+bx+by
=a(x+y)+b(x+y)
=(a+b)(x+y)
我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。
同样,这道题也可以这样做。
ax+ay+bx+by
=x(a+b)+y(a+b)
=(a+b)(x+y)
几道例题:
1. 5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)
=(5x+3y)(a+b)
说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。
2. x^3-x^2+x-1
解法:=(x^3-x^2)+(x-1)
=x^2(x-1)+ (x-1)
=(x-1)(x^2+1)
利用二二分法,提公因式法提出x2,然后相合轻松解决。
3. x2-x-y2-y
解法:=(x2-y2)-(x+y)
=(x+y)(x-y)-(x+y)
=(x+y)(x-y-1)
利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。
⑷十字相乘法
这种方法有两种情况。
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).
图示如下:
a b
×
c d
例如:因为
1 -3
×
7 2
-3×7=-21,1×2=2,且2-21=-19,
所以7x^2-19x-6=(7x+2)(x-3).
十字相乘法口诀:首尾分解,交叉相乘,求和凑中
⑸拆项、添项法
这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。
例如:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=(bc+ca)(c-a)+(bc-ab)(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b).
⑹配方法
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。
例如:x^2+3x-40
=x^2+3x+2.25-42.25
=(x+1.5)^2-(6.5)^2
=(x+8)(x-5).
⑺应用因式定理
对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.
例如:f(x)=x^2+5x+6,f(-2)=0,则可确定x+2是x^2+5x+6的一个因式。(事实上,x^2+5x+6=(x+2)(x+3).)
注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数;
2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数
⑻换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。
注意:换元后勿忘还元.
例如在分解(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则
原式=(y+1)(y+2)-12
=y^2+3y+2-12=y^2+3y-10
=(y+5)(y-2)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1).
也可以参看右图。
⑼求根法
令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .
例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0,
则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.
所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).
⑽图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).
与方法⑼相比,能避开解方程的繁琐,但是不够准确。
例如在分解x^3 +2x^2-5x-6时,可以令y=x^3; +2x^2 -5x-6.
作出其图像,与x轴交点为-3,-1,2
则x^3+2x^2-5x-6=(x+1)(x+3)(x-2).
⑾主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
⑿特殊值法
将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例如在分解x^3+9x^2+23x+15时,令x=2,则
x^3 +9x^2+23x+15=8+36+46+15=105,
将105分解成3个质因数的积,即105=3×5×7 .
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,
则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。
⒀待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例如在分解x^4-x^3-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。
于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d)
=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd
由此可得a+c=-1,
ac+b+d=-5,
ad+bc=-6,
bd=-4.
解得a=1,b=1,c=-2,d=-4.
则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4).
也可以参看右图。
⒁双十字相乘法
双十字相乘法属于因式分解的一类,类似于十字相乘法。
双十字相乘法就是二元二次六项式,启始的式子如下:
ax^2+bxy+cy^2+dx+ey+f
x、y为未知数,其余都是常数
用一道例题来说明如何使用。
例:分解因式:x^2+5xy+6y^2+8x+18y+12.
分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。
解:图如下,把所有的数字交叉相连即可
x 2y 2
① ② ③
x 3y 6
∴原式=(x+2y+2)(x+3y+6).
双十字相乘法其步骤为:
①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y);
②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y²+18y+12=(2y+2)(3y+6);
③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。[15]利用 根与系数的关系 对二次多项式进行因式分解 对于二次多项式 aX^2+bX+c(a≠0)
aX^2+bX+c=a[X^2+(b/a)X+(c/a)X].
当△=b^2-4ac≥0时,
=a(X^2-X1-X2+X1X2)
=a(X-X1)(X-X2).
[编辑本段]多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。”
几道例题
1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.
解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项)
=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)
=[(1+y)+x^2(1-y)]^2-(2x)^2
=[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]
=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).
2.求证:对于任何实数x,y,下式的值都不会为33:
x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.
解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-4y^2)(x^2-y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y).
(分解因式的过程也可以参看右图。)
当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。
3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。
分析:此题实质上是对关系式的等号左边的多项式进行因式分解。
证明:∵-c^2+a^2+2ab-2bc=0,
∴(a+c)(a-c)+2b(a-c)=0.
∴(a-c)(a+2b+c)=0.
∵a、b、c是△ABC的三条边,
∴a+2b+c>0.
∴a-c=0,
即a=c,△ABC为等腰三角形。
4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。
解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)
=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).