Ⅰ 数学基础差该怎么办
数学基础差要找一些方法进行提高,下面是一些改善数学基础的方法。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先老师布置的作业要独立完成,不要轻易抄答案,或者上网搜索,也不要问家长,养成独立思考的学习习惯。同事,建议准备一个纠错本,每天整理学习过程中遇到的错题,定时抽时间回顾一下,分析错误原因,下次在遇到就能轻易解出答案。
有些基础薄弱同学觉得自己本身错的很多,建立错题本感觉整张试卷都要抄下来。正是因为我们错的越多,更要知道自己错哪里?为什么会错这么多?分析原因,找到原因,对症下药,这样才能取得进步。对于错题,首先要学会分析错误原因,找到纠正的办法,而不是又重新找一份试卷训练,这样只会让毛病更加严重。我们不能盲目做题,必须搞清楚错误原因,是知识没掌握好还是运用能力等等,这样做题才会有效。
做题解题,我们不能做了就扔,一定要学会解题后反思。如做错的题,我们是卡住哪一个步骤,为什么答案中这道题这个步骤是这么写的,为什么会用这个公式,公式的出现是为了解决什么问题等等,这些都是需要我们好好反思总结。
Ⅱ 咋找数学题,老师让我们自己找题做
数学学习不同于其它学科,它规律性
较强,因此拦旅自己找数学题要找那些有
规律、有代表性的题,每类题做几个,
这样就能起到巩固旧知识的目的,也
不至简世凳于陷入题海战术。当然如果你有
纠错本(整理平日练习或考试出错返毁的题),也可以把纠错本上的题重新做
一遍,确保以前做错的题不会再出错。
Ⅲ 数学基础如何学好
有良好的学习兴趣,试着去培养数学得兴趣,久而久之,你就会发现数学并不是那么得难,试着多看看有关数学的动漫以及书本,都可以培养你对数学的兴趣。
课前复习,试着看一看书上的原话,没举胡看懂的地方用记号笔画上,等上课的时候认真听课,把没听懂的地方听懂,也可以举手问老师,老师会为你讲解。
重视对概念的理解,不要去把那些能理解的话死记硬背下来,理解就行,实在不行就举例子,如:因为正数大于0,负数小于0,所以正数大于负数。一步步去把它推导出来,当然,基础还是要背的,其他理解了就行。
强大的空间想象力,学习几何图形都需要强大的空间想象力,而培养空间想象力的方法就是:1.善于画图,多画图,2.用教学器具培养你的观察想象力,3.如第一个,学,练习,画,有助于想象力的培养。4.自己多做实验,使抽象化的物体变的立体起来。
找一个学习超好,班里前3的人作为“敌人”,试着把他作为你的仇人,想想自己为什么超不过他,为什么学习没他正碰拦强,试着激怒自己,并努力超过他,有时候,成功是需要敌人的帮助的。
正确面对事实,假如你在一次考试中考差了,不要灰心,多想想自己为什么会错在那个地方,做好考后一百分,这样后,把错题写在错题本上,并把方法和错题答法写在上面,有助于你的下一次考试成绩提高,用名人的一句话来说:没有失败,何有成功?以及爱迪生说的:失败乃成功之母。考差的时候多想想这些话,鼓励自己。
课内认真听讲,课后努力复习。上课要跟着老师思路来,老师讲哪里你看哪里,不懂下课就去问,上课积极举手,养成听课好习惯,下课休息时光去上个厕所就回来,趴在课桌上想想老师讲过的内容,脑内放电影,提高效率。
多做题,养成良好习惯。想要学好数学,多做题是难免吵旅的,当你攻克完一道题以后,不要急着去做下一题,试着用其他办法,看能不能做出这道题,做不出,要积极询问老师,老师会为你讲解,你只需要把方法记住,套路记住就行了。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
2学数学必须遵循的规律
01
第四个原则:学习数学必须遵循从具象到形象再到抽象的规律。
数学,本是源自生活,为了解决具体的问题而生。可以说,一点也不神秘,更不会深奥。为什么我们学起来又会那么困难?
原因在于我们学习数学的方法是错误的,我们没有按照大脑工作的习惯来学习。
Ⅳ 数学如何打好基础
一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
Ⅳ 怎么学会数学 怎么弄懂数学题目 做题时从哪入手
首先,最主要的还是在于上课要认真听老师讲课,并且做好笔记,我知道,也许课堂上不够时间做笔记,但你只要听懂了老师讲的就行了,这样就可以只把题目抄下来,课后再抽时间来整理,这样既没影响听课,自己又巩固了一遍,印象更加深刻。 当然,也应该完成当天所学的相应的作业,书上和练习册为主,资料书为辅。记住!千万不要只重视难题,最重要的是要掌握好基础,基础打牢固了,再做难题也不迟。这些桥罩神做完了,当然还不能放松呢,因为人的记忆呈螺旋状,一定时间后,就需要得到即时的敏亏复习,加深记忆,这样反复记上几次,到最后就不会忘记了(建议你在一周结束后抽一写时间整理复习当轴所学的内容)我要强调的是,想学好数学,真的要反复记忆,做过的题多做几遍(这是我们全年级地1的贴身体会)最后呢,是要自己独立思考,别性急,一道题做不了,要多想想,想多了,办法也就多了,对于自己做过的题,要进闷伍行总结,找出规律来对于数学,可以大体翻下试卷,因为书上的内容是有限的,数学题型很多都是类似的,你大体看看基本上可以把握试卷的题型,出题思路,然后有针对的复习。 个人感觉数学的基本概念很重要,弄懂了这个再做题的话才能清清楚楚,明明白白。 对于看原来做过的作业,个人认为也是比较可取的,可以着看平时做错的题,回想当时的解题思路,与正确的解题方法进行比较,改进。 在平时做题的时候,可以把好的题,出现较多的一类题圈出来,这样在考试前复习就方便得多了。 每节新内容学完后,我们要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。 并通过一些练习题加以巩固。数学不同于其他学科,单把概念、定理、公式背熟,无法解决实际问题,只有通过练来减少运算中出现的错误。 另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用。做到绝不出现第二次类似错误
Ⅵ 初三数学基础扎实但不会做难题怎么办
如果初中的数学基础扎实但是遇到了难题不会解决,可以从以下几个方面入手:1. 强化基本知识点:针对难题所涉及的知识点,回顾基本概念和应用方法,再进行一些例题练习,以加深对知识点的理解和记忆轮困腔。
2. 扩展思维方式:思维方式的不同会影响解题的方法和效率,扩展思维方式可以站在不同角度来尺让思腊衫考问题,提高审题能力和灵活性,找到更多的解题思路。
3. 寻求他人帮助:可以向老师、同学、家长或者网络平台等寻求帮助,借助他人经验或者解题思路,或许可以有新收获。
4. 做大量练习:针对难题所涉及的知识点,多做练习能够提高解题技巧和熟练度,再将解题方法拓展到难题中。
5. 学习提高理解能力的方法:比如构建数学模型、找出特殊数据、归纳法、递推法、反证法等。
总之,对于解决难题应该注重理解和方法,以上几个方面都应该考虑到,逐渐提高解决难题的能力,这需要坚持练习和不断的改进。
Ⅶ 如何掌握一些基础的数学解题技巧
配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
判别式法与韦达定理
一元二次方程ax2 bx c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。
构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
等(面或体)积法
平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的效果。运用面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。
用归纳法或分析法证明几何题,其困难在添置辅察陆助线。等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,通过运算达到求证的结果。所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看败判顷来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。冲缺将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
Ⅷ 基础数学怎么做,如何做吗
每一类型的数学题都有方法,要具体问题具体分析。你还是举几个例子吧。
Ⅸ 0基础自学数学怎么学
我觉得数学自学还是有难度,不过智商超高的你不妨试试0基础自学数学的方法,下面我为你收集了0基础自学数学的方法的资料,希望对你有所帮助!
0基础自学数学的方法
一、从看题到做题,这是一个很难的习惯改变。
在我看来,看题目是一种偷懒的过程,也是一种自我欺骗: 看似搞定了一本书或者习题册,心理上有了一些成就感, 或者安慰, 却照着真正解题还差很远, 只有能真正掌握, 才会理解这种差距有多大。
二、解题首先请消除畏难心理
题目不是科学上的开放问题, 而是面向学生的, 所以一定有解(极少数出错的题目除外);所有的背景知识,名词都是学过的,所以更不必害怕。 所有的题目都有已知条件, 如果觉得自己不会做, 那么就回忆已经做过的题目和学过的知识, “由这些已知条件能得到什么题目中没有明说的东西?” 也就是获得求解题目的 ”中间量” ;另一方面, 也要仔细品味一下提问, 想想看这个提问是否和已经熟悉的东西等价。 有不少的学生,看到题还没有几分钟,可能也就几秒钟,算了几下,就觉得做不下去, 说 ”不会做”,然后翻看答案, 恍然大悟。 这其实大可不必(要最终杜绝)。知识都是现有的, 我们要做的, 就是为此岸的已知, 和对岸的答案, 搭上一架架用等式连成的桥。
三、要很早就开始做模拟题
考试中涉及的知识, 对于已经快要高中毕业的学生来说是很有限的。差不多每个学生都知道某个定理, 某个公式,而真正让学生们拉开差距的, 并非知识, 而是这种”搭桥”的能力。 高中教育最终面向高考, 就不应该过晚做模拟题, 因为大的题目才能更多的训练”搭桥”能力; 既然解模拟题是一种能力, 而非知识的罗列, 就要及早开始。
虽然一套题涵盖了所有知识, 但是各个题目却还是相对独立的: 有一道大题主要考三角函数, 有一道大题主要考解析几何, 云云。 所以在学过一块知识之后, 就去做模拟题。 这里不主张用那种已经分类的模拟题, 而是像<天利38套>那样整套的题目, 自己分类之后, 试着解答。 因为分类的题目更侧重”知识”,而高考题目更侧重搭桥能力。
四、解题当然要以知识为依托
这就要依靠自己的自学能力, 进行知识的超前学习。 这时就有人反对了, 如果我连上课都跟不上, 谈何超前学习? 其实不然。试想, 作为一个高中生, 你没有再学全等三角形, 没有学平面几何, 那么拿到初中的题目, 你还会像初中刚刚学到的时候那样畏惧吗? 即使不会解, 是不是很有信心的, 翻翻初中课本, 刷刷两下就能解出来呢?
五、超前学习的必要性
高中不再学平面几何, 回头再看初中的平面几何也不觉得难, 这是为什么呢? 这是因为人脑对于认知有一个慢热过程。 当知识已经在脑子里过了很多遍, 大脑有了一定的熟悉, 在这个基础上进行理解会轻松得多。 所以如果超前学习, 在老师讲课的时候, 对于自己就是一个复习。 一个不好理解的知识点, 可能有的同学一旦被卡住, 整节课甚至整个学期都跟不上, 但是如果作为复习, 就轻车熟路。 有些高三学生, 当第一轮复习的时候, 发现原来的知识不过如此, 而高考成绩却还不理想, 就是因为前两年学知识, 后一年才学搭桥解题带来的弊病。
六、教材加上一本好的参考书就足够超前学习
书不在多,理科和文科那种需要”博览群书”不同,把一本好书读透即可。 因此,教材加上一本好的参考书就足够超前学习。 在学习的时候, 通常是定义+定理+例题+习题的模式。把定义看懂, 知道是在描述怎样的一个过程, 看似高深就变得平淡无奇。 例题永远都是最好的习题。 因为能够被选为例题, 一定是因为有代表性, 因此答案详细。 所以为了检测自己是否理解概念, 就捂住答案, 把例题当作习题来做。 对于解不出来的题目, 不要一下子看完答案, 而要在答案帮助自己知道是哪一步卡住了的时候, 再捂上答案自己写下去。
七、只有两类题目能够真正帮助自己的进步
一类是不会的题目, 一类是做错的题目。 不会的题目, 也要试试看, 好搞明白自己到底是哪里被卡住了; 做错的题目, 当然要知道自己是怎么错的。 不能以”马虎”来糊弄过去。 所有这样的题目都要在未来的某一时间重新全部做一遍, 往往让人惊讶的是: 总是还会不停的犯同样的错误。
自学数学的步骤
第一个步骤:买习题册。
选择市面上最好的、你听过的、同学老师推荐的参考书习题册,你先买个至少五本。我一般是买八本十本的,内容不重要,答案一定要全。当然,我会天天被老妈喷,因为99%的书都是空白的……
第二个步骤:看课本。
第一遍就是看,争取把所有的定理、知识点、例题看懂。你肯定有不会的,然后,在目录旁边记下来,直到看完。
第二遍看自己写的目录,结合一堆参考书的例题或习题进行研究,解决不会的地方。有个概念就够,不用完全掌握,不是完全不懂就行。
以高中数学难度,三天就应该对一本课本有个大概感觉了 (我一般就用一天)。
第三个步骤:学一个单元。
知道这学期学什么之后,提前认真的学一个单元。学整学期的,太累,还容易忘。花一个周末学一个单元,基本没啥压力,反正不需要全学会。
接着开始做题。只做单元练习, 单节练学根本不要做。(博宇解释下,一本书会有七八个单节练习和一个单元综合练习)。还是那句话,因为你没学过,能用课本知识解决多少算多少。
我不是天才,肯定都有不会的,那不会的怎么办呢?我的方法是这样,我不是有十本书么,我看别的书进行学题,认真地找类似的题目(高中数学题型就那些,十本书不太可能找不到类似的!!!),然后根本不想,直接看答案,把答案看完了,回过头来再做你原本要做的单元练习,这就等于你重新思考了。
关键是一定要做一题会一题。除了个别压轴题,按照这个方法,你理论上都能自学完教材。智商高的,或者愿意花时间的,应该能全做完,不想研究难题也无所谓。
第四个步骤:重复学习。
你提前学过每个单元,而且做过完整的单元练习了,所以,上课就等于你在复学了!
认真说, 带着记忆听“新课”简直爽到爆!!!
把之前自己不懂的地方注意听听,然后和老师多交流一下,基本就搞定了。上课无聊,那就做书本课后题来巩固记忆,刷熟练度,你会发现这个过程下来简单的不得了。有时间,再把买来的剩下习题册,随便做一两套题 。