导航:首页 > 数字科学 > 数学上的几何指什么

数学上的几何指什么

发布时间:2023-04-30 12:53:07

A. 什么是几何

简单地说,几何学是研究二维形状和三维或型橡图形的大小、形状和位置的数学分支。尽管古希腊数学家欧几里得通常被认为是“几何之父”,但几何学的研究在许多早期文化中都是独立出现的。

几何是源自希腊语的词。在希腊语中,“ geo”的意思是“地球”,“ metria”的意思是度量。

从幼儿园到 12 年级, 几何学贯穿于学生课程的每个部分, 并贯穿大学和研究生学习。由于大多数学校使用螺旋式课程,因此在整个年级中都会重新访问介绍性概念,并且随着时间的推移难度会有所提高。

如何使用几何?

即使没有打开几何书,几乎每个人每天都在使用几何。当您早上起床或平行停放汽车时,您的大脑会进行几何空间计算。在几何学中,您正在探索空间感和几何推理。

您可以在艺术、建筑、工程、机器人、天文学、雕塑、空间、自然、运动、机器、汽车等领域找到几何学。

几何学中经常使用的一些工具包括指南针、量角器、正方形、图形计算器、几何画板和尺子。

欧几里得

几何学领域的主要贡献者是欧几里得(公元前 365-300 年),他以他的作品“元素”而闻名。我们今天继续使用他的几何规则。随着小学和中学教育的进步,欧几里得几何和平面几何的研究将贯穿始终。衫旁但是,非欧几何将成为后期和大学数学的重点。

早期教育中的几何学

当你租悉在学校学习几何时,你正在发展空间推理和解决问题的能力。几何与数学中的许多其他主题相关联,特别是测量。

在早期教育中,几何学的重点往往是形状和实体。从那里开始,您将学习形状和实体的属性和关系。您将开始使用解决问题的技巧、演绎推理、理解变换、对称性和空间推理。

后期教育中的几何学

随着抽象思维的发展,几何变得更多地是关于分析和推理。在整个高中期间,重点是分析二维和三维形状的属性、推理几何关系以及使用坐标系。学习几何可以提供许多基础技能,并有助于培养逻辑、演绎推理、分析推理和 解决问题的思维技能。

几何主要概念

几何中的主要概念是线和线段、形状和实体(包括多边形)、三角形和角以及圆的周长。在欧几里得几何中,角度用于研究多边形和三角形。

作为一个简单的描述,几何中的基本结构——一条线——是由古代数学家引入的,用来表示宽度和深度可以忽略不计的直线物体。平面几何研究平面形状,如线条、圆形和三角形,几乎可以在一张纸上绘制任何形状。同时,立体几何研究立方体、棱镜、圆柱体和球体等三维物体。

几何中更高级的概念包括柏拉图立体、 坐标网格、 弧度、圆锥截面和三角学。对三角形内角或单位圆内角的研究构成了三角学的基础。

B. 什么是几何

几何,就是研究空间结构及性质的一门学科,它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。

几何学发展历史悠长,内容丰富,和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。暂时的数学各分支发展都有几何化趋向,即用几何观点及思想方法去探讨各数学理论。常见定理有勾股定理,欧拉定理,斯图尔特定理等。



(2)数学上的几何指什么扩展阅读:

从代数的角度看,几何学从传统的解析几何发展成了更一般的一门理论——代数几何。传统代数几何就是研究多项式方程组的零点集合作为几何物体所具有的几何结构和性质——这种几何体叫做代数簇。解析几何所研究的直线、圆锥曲线、球面、锥面等等都是其中的特例。

稍微推广一些,就是代数曲线,特别是平面代数曲线,它相应于黎曼曲面。代数几何可以用交换代数的环和模的语言来描述,也可以从复几何、霍奇理论等分析的方法去探讨。代数几何的思想也被引入到数论中,从而促使了抽象代数几何的发展,比如算术代数几何。

C. 什么是几何学

几何”这个词在汉语里是“多少?”的意思,但在数学里“几何”的涵义就完全不同了。“几何”这个词的词义来源于希腊文,原意是土地测量,或叫测地术。

几何学和算术一样产生于实践,也可以说几何产生的历史和算术是相似的。在远古时代,人们在实践中积累了十分丰富的各种平面、直线、方、圆、长、短、款、窄、厚、薄等概念,并且逐步认识了这些概念之间、它们以及它们之间位置关系跟数量关系之间的关系,这些后来就成了几何学的基本概念。

正是生产实践的需要,原始的几何概念便逐步形成了比较粗浅的几何知识。虽然这些知识是零散的,而且大多数是经验性的,但是几何学就是建立在这些零散、经验性的、粗浅的几何知识之上的。

几何学是数学中最古老的分支之一,也是在数学这个领域里最基础的分支之一。古代中国、古巴比伦、古埃及、古印度、古希腊都是几何学的重要发源地。

大量出土文物证明,在我国的史前时期,人们已经掌握了许多几何的基本知识,看一看远古时期人们使用过的物品中那许许多多精巧的、对称的图案的绘制,一些简单设计但是讲究体积和容积比例的器皿,都足以说明当时人们掌握的几何知识是多么丰富了。

几何之所以能成为一门系统的学科,希腊学者的工作曾起了十分关键的作用。两千多年前的古希腊商业繁荣,生产比较发达,一批学者热心追求科学知识,研究几何就是最感兴趣的内容,在这里应当提及的是哲学家、几何学家柏拉图和哲学家亚里士多德对发展几何学的贡献。

柏拉图把逻辑学的思想方法引入了几何,使原始的几何知识受逻辑学的指导逐步趋向于系统和严密的方向发展。柏拉图在雅典给他的学生讲授几何学,已经运用逻辑推理的方法对几何中的一些命题作了论证。亚里士多德被公认是逻辑学的创始人,他所提出的“三段论”的演绎推理的方法,对于几何学的发展,影响更是巨大的。到今天,在初等几何学中,仍是运用三段论的形式来进行推理。

但是,尽管那时候已经有了十分丰富的几何知识,这些知识仍然是零散的、孤立的、不系统的。真正把几何总结成一门具有比较严密理论的学科的,是希腊杰出的数学家欧几里得。

欧几里得在公元前300年左右,曾经到亚历山大城教学,是一位受人尊敬的、温良敦厚的教育家。他酷爱数学,深知柏拉图的一些几何原理。他非常详尽的搜集了当时所能知道的一切几何事实,按照柏拉图和亚里士多德提出的关于逻辑推理的方法,整理成一门有着严密系统的理论,写成了数学史上早期的巨着——《几何原本》。

《几何原本》的伟大历史意义在于,它是用公理法建立起演绎的数学体系的最早典范。在这部着作里,全部几何知识都是从最初的几个假设除法、运用逻辑推理的方法展开和叙述的。也就是说,从《几何原本》发表开始,几何才真正成为了一个有着比较严密的理论系统和科学方法的学科。

欧几里得的《几何原本》

欧几里得的《几何原本》共有十三卷,其中第一卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件;第二卷讲如何把三角形变成等积的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术得里论;最后讲述立体几何的内容。

从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧式几何。

《几何原本》最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容,定义、公理、公设、命题(包括作图和定理)。《几何原本》第一卷列有23个定义,5条公理,5条公设。(其中最后一条公设就是着名的平行公设,或者叫做第五公设。它引发了几何史上最着名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。)

这些定义、公理、公设就是《几何原本》全书的基础。全书以这些定义、公理、公设为依据逻辑地展开他的各个部分的。比如后面出现的每一个定理都写明什么是已知、什么是求证。都要根据前面的定义、公理、定理进行逻辑推理给予仔细证明。

关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。

欧几里得《几何原本》的诞生在几何学发展的历史中具有重要意义。它标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。

从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,但是欧几里得几何学仍旧是中学生学习数学基础知识的好教材。

由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青、少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。

少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。

近代物理学的科学巨星爱因斯坦也是精通几何学,并且应用几何学的思想方法,开创自己研究工作的一位科学家。爱因斯坦在回忆自己曾走过的道路时,特别提到在十二岁的时候“几何学的这种明晰性和可靠性给我留下了一种难以形容的印象”。后来,几何学的思想方法对他的研究工作确实有很大的启示。他多次提出在物理学研究工作中也应当在逻辑上从少数几个所谓公理的基本假定开始。在狭义相对论中,爱因斯坦就是运用这种思想方法,把整个理论建立在两条公理上:相对原理和光速不变原理。

在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。

但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。

现代几何公理体系

人们对《几何原本》中在逻辑结果方面存在的一些漏洞、破绽的发现,正是推动几何学不断向前发展的契机。最后德国数学家希尔伯特在总结前人工作的基础上,在他1899年发表的《几何基础》一书中提出了一个比较完善的几何学的公理体系。这个公理体系就被叫做希尔伯特公理体。

希尔伯特不仅提出了—个完善的几何体系,并且还提出了建立一个公理系统的原则。就是在一个几何公理系统中,采取哪些公理,应该包含多少条公理,应当考虑如下三个方面的问题:

第一,共存性(和谐性),就是在一个公理系统中,各条公理应该是不矛盾的,它们和谐而共存在同一系统中。

第二,独立性,公理体系中的每条公理应该是各自独立而互不依附的,没有一条公理是可以从其它公理引伸出来的。

第三,完备性,公理体系中所包含的公理应该是足够能证明本学科的任何新命题。

这种用公理系统来定义几何学中的基本对象和它的关系的研究方法,成了数学中所谓的“公理化方法”,而把欧几里得在《几何原本》提出的体系叫做古典公理法。

公理化的方法给几何学的研究带来了一个新颖的观点,在公理法理论中,由于基本对象不予定义,因此就不必探究对象的直观形象是什么,只专门研究抽象的对象之间的关系、性质。从公理法的角度看,我们可以任意地用点、线、面代表具体的事物,只要这些具体事物之间满足公理中的结合关系、顺序关系、合同关系等,使这些关系满足公理系统中所规定的要求,这就构成了几何学。

因此,凡是符合公理系统的元素都能构成几何学,每一个几何学的直观形象不止只有—个,而是可能有无穷多个,每一种直观形象我们把它叫做几何学的解释,或者叫做某种几何学的模型。平常我们所熟悉的几何图形,在研究几何学的时候,并不是必须的,它不过是一种直观形象而已。

就此,几何学研究的对象更加广泛了,几何学的含义比欧几里得时代更为抽象。这些,都对近代几何学的发展带来了深远的影响。

D. 几何是什么意思

几何是研究空间结构及性质的一门学科。

它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。

几何作为数学概念,是指几何图形,点、线、角、面、形,或由它们构成的平面图形。几何体,是由平面和曲面围成的空间有限部分。如正方体,长方体、棱柱体、圆柱体、锥体、球体、椭圆体,等等的立体。

几何的特点

1、几何学印证了许多代数问题,也拓展了数学的广度与深度;更是架设了数学“在生活、生产中”实际应用的桥梁,这很有探究的意义。

2、几何学无论在中国,还是在西方,都有悠久的历史,都有许多的学术成果。例如,勾股定理、毕达哥拉斯定理、欧几里德几何、祖冲之的圆周率等等。几何学是与“代数学”的并列的数学分支学科,同样都是“数与形”结含的基础。

E. 数学里讲的“几何”两个字是什么意思为什么要用“几何”二字是怎么来的

几何学是研究空间(或平面)图形的形状、大小和位置的相互关系的一门科学,简称为几何。

“几何”这一名词最早出现于希腊,由希腊文“土地”和“测量”二字合成,意思是“测地术”。实际上希腊人所称的“几何”是指数学,对测量土地的科学,希腊人用了“测地术”的名称。

古希腊学者认为,几何学原是由埃及人开创的,由于尼罗河泛滥,常把埃及人的土地界线冲掉,于是他们每年要作一次土地测量,重新划分界线。这样,埃及人逐渐形成一种专门的测地技术,随后这种技术传到希腊,逐步演变成现在狭义的几何学。

公元前三百年左右,古希腊数学家欧几里得将公元前七世纪以来希腊几何积累起来的既丰富又纷纭的庞杂结果整理在一个严密统一的体系中,从原始公理开始,列出5条公理,通过逻辑推理,演绎出一系列定理和推论,从而建立了被称为欧几里得几何学的第一个公理化数学体系,写成了巨着《几何原本》。

我国古代的几何学是独立发展的,对几何学的研究有悠久的历史,从甲骨文中发现,早在公元前13、14世纪,我国已有“规”、“矩”等专门工具。《周髀算经》和《九章算术》书中,对图形面积的计算已有记载,《墨经》中已给一些几何概念明确了定义。刘微、祖冲之父子对几何学也都有重大贡献。中文名词“几何”是1607年徐光启在意大利传教士利玛窦协助下,翻译《几何原本》前6卷时首先提出的。这里说的几何不是狭义地指“多少”的意思,而是泛指度量以及包括与度量有关的内容。

当今,几何已形成结构严密的科学体系,成为数学中的一个重要分支,是训练逻辑思维能力与空间想象能力的最有效的学科之一。

F. 数学几何是什么意思

几何就困举是图形,图形就是三角形,四边形,五边形等等由伍磨线段组成的平面图形.而立体几何就是有平面或线段腔尺斗组成的3维图形

阅读全文

与数学上的几何指什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1692
西安瑞禧生物科技有限公司怎么样 浏览:949
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1642
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050