‘壹’ 数学的发展是什么呢
数学的发展:
1、数学形成时期(远古—公元前六世纪),这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最简单的几何形式,算术与几何还没有分开。
2、初等数学时期、常量数学时期(公元前六世纪—公元十七世纪初)这个时期的基本的、最简单的成果构成中学数学的主要内容,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。
3、变量脊或数学时期(公元十七世纪初—十九世纪末)变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus)的创立。
4、现代数学时期(十九世纪末开始),数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
5、数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的樱碧伍数学发现,并促成全新数学学科的发展。数学家也研究纯数学,也就是慧知数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。
‘贰’ 数学发展的历史介绍是什么
数学发展的历史介绍如下:
第一阶段:数学的萌芽时期(公元前4000年—公元前六世纪)。
随着远古人类的发展,生活中慢慢涉及到数的应用,人类建立了最基本的数学概念。自然数出现了,有了简单的计算,并认识了最基本最简单的几何图形。
这一阶段数学发展的杰出代表为古巴比伦数学、中国数学、埃及数学等。这个时期的数学知识大致相当于幼儿园和小学一二年级的内容,甚至比这个还要简单。
第二阶段:初等数学和常量数学时期(公元前6世纪—公元十六世纪末)。
随着历史的前进,数学也得到了极大发展。这一时期,希腊的数学家把数学向前推进了一大步。以欧几里得的《几何原本》为代表,引入了公理体系和严谨的证明,使数学变得更加完备,把数学由单纯具体的测量得出结论变为严格的抽象证明。
毕达哥拉斯学派完整了勾股定理的严谨证明进而发现了无理数,也由此引发了第一次数学危机。这也使得数学从有理数发展到了无理数。
第三阶段:变量数学阶段(公元十七世纪—十九世纪中后期)。
这一阶段也叫做近代数学阶段,数学得到了飞速发展。而我国正处在闭关锁国的大清王朝。
这一阶段的标志是数学由常量转变为变量,其发展有两个里程碑。
第一个里程碑是解析几何的诞生。1637年法国数学家笛卡尔发明了坐标系,创立了解析几何,将变量引入数学,也把数字与图形结合了起来,为微积分的开创奠定的基础。
第二里程碑是微积分的创立。英国科学史上最伟大的人物—牛顿,从物理的运动入手,通过引入无穷小量的概念,于1669年提出了微积分的概念,为近代数学的发展提供力最有利的工具,开辟了数学的新纪元。更是把数学从静态常量阶段推向了动态变量的研究阶段。
第四阶段:现代数学时期(1874年以后)。
1874年德国数学康托创立了集合论,标志着现代数学时期的到来,同时也是纯粹数学的开始。数学界三大巨头庞加莱、克莱因、希尔伯特的出现,也预示着数学更加的抽象和纯粹。也导致了实变函数、泛函分析、拓扑学和抽象代数四大抽象分支的崛起。
尽管由集合论所引发的第三次数学危机依然没有解决,但我们相信,危机的到来依然是数学发展的动力,危机的解决一定会让数学更上一层楼,这已经有前两次数学危机所证实。当然了,这一阶段的数学知识已经远远超出普通人所能理解的范围,除了专门的数学人才,其他人估计一辈子也不会碰到更不会直接用到。
‘叁’ 数学在历史过程中是怎样发展的
数学的发展史大致可以分为四个阶段,
即数学形成时期,初等数学,变量数学时期。
第一时期
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
第二时期
初等数学,即常量数学时期。这个时期的基本誉滚的、最简单的成果构成现在中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数、三角。
第三时期
变量数学时期。变量数学产生于17世纪,大体上经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分【微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和庆哪余曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为缓运定义和计算面积、体积等提供一套通用的方法。】的创立。
第四时期
现代数学。现代数学时期,大致从19世纪上半叶开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
‘肆’ 现在数学发展到什么程度了
数学是怎么发展到现在的(规模)?
一个偶然引起一个猜想,然后无数个偶然建立无数个门,那数学是怎么从仅仅用来计量的“东西,成为这么庞大的体系
我尽量避开特别专业的东西,简单的说一下数学发展史。
首先数学的发展分为四个时期:
第一时期
数学形成时期
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
第二时期
初等数学,即常量数学时期
初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算术、几何、代数。
第三时期
变量数学时期
变量数学时期。变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。它是数学的一个基础学科。内容主要包括极限、微分学、积分学、方程及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
第四时期
现代数学时期
现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征,分支开始变的极其复杂,发展速度奇快。
数学之所以能发展到现在的规模,其中很大一部分原因是因为数学的发展程度限制了当下的技术发展程度,很多情况下都是,我要解决问题,但是没有能够满足我解决问题需求的数学工具,数学除了自己推动自己,很多都是靠其他学科来推动的,例如物理 , 物理和数学两者一直是相辅相成,共同推动发展的。
在简洁一点,笼统一点:
推动数学发展的主要原因,是各种技术的实际需求以及人类对未知技术和学术方面的猜想来推动的。
‘伍’ 数学的发展历史是什么
数学好袜肢的发展历史是:
1、人类进入原始社会,就需要数学了,从早期的结绳记事到学会记数,再到简单的加减乘除,这些都是人类日常生活中所遇到的数学问题。数学是有等级的,就像自然数的运算是小学生的水平一样,超出了这个范围小学生就不能理解了。
像有未知数的运算小学生就无从下手一样,数学的发生发展也是从低级向高级进化的,人类最早理解的是算数,经过额一段时间的发展算数发展到了方程、函数,一级一级的进化,才发展到了现代的的数学。
2、人类数学的发展做出较大成就的是古希腊时期,奇怪的是古希腊对数的运算并不突出,反而是要到中学才能学到的几何学在古希腊就奠定了基础,学过几何的人对欧几里得不会陌生,欧几里得是古希腊人,数学家,被称为“几何之父”。
他最着名的着作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。
3、在古希腊教育中几何学占有相当重要的地位,柏拉图提倡的希腊六艺就包括几何,后来希腊文化衰落了,希腊被入侵,希腊图书馆的藏书被掠夺了,被阿拉伯人保存了。
4、在算术上,阿拉伯人对数学的贡献是现在人们最熟悉的1、2、……9、0十个数字,称为阿拉伯数字。但是,在数学发展过程中,阿拉伯人主要吸收、保存了希腊和印度的数学,并将它传给欧洲。
阿拉伯人采用和改进了印度的数字记号和进位记法,也采用了印度的数学记号和进位记法,也采用了印度的无理数运算,但放弃了负数的运算。代数这门学科名称就是由阿拉伯人发明的。阿拉伯人还解出一些一次、二次方程,甚至三次方程。
5、12、13世纪欧洲数学界的代表人物是斐波那契,他向欧洲人介绍了印度-阿拉伯数码和位值制记数法,以及各友世种算法在商业上的应用。中国的盈不好羡足术和《孙子算经》的不定方程解法也出现在斐波那契的书中。此外他还有很多独创性的工作。
‘陆’ 现代数学的发展怎样
现代数学已经由以往的面貌脱胎换骨:极限理论让微积分变得完善,集合论让数学变得稳固等20世纪是数学大发展的世纪。数学的许多重大难题得到完满解决, 如费尔玛大定理的证明,有限单群分类工作的完成等, 从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展带或, 数学家们深切感谢20世纪最伟大的数学大师大卫. 希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的着名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向, 其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特, 许多当代世界着名的数学家卜行亮在过去几年中整理和提出新的数学难题, 希冀为新世纪数学的发展指明方向。 这些数学家知名度是高的, 但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向, 而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日, 千年数学会议在着名的法兰西学院举行。 会上,98年费尔兹奖获得者伽沃斯(Gowers)以“数学的重要性”为题作了演讲, 其后,塔特(Tate)和阿啼亚 (Atiyah) 公布和介绍了这七个“千年大奖问题”。 克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。 每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。 现在先只列出一个清单:这七个“千年大奖问题”是: NP 完全问题, 郝治(Hodge)型宽 猜想, 庞加莱(Poincare) 猜想, 黎曼(Rieman)假设,杨-米尔斯 (Yang-Mills) 理论, 纳卫尔-斯托可(Navier-Stokes)方程, BSD(Birch and Swinnerton-Dyer)猜想。 “千年大奖问题”公布以来, 在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。 可以预期, “千年大奖问题” 将会改变新世纪数学发展的历史进程
‘柒’ 数学发展到了什么地步
当数学发展到一定阶段的时候,分支就越来越多,不得不加上一个s.
现在又有人致力统一数学,把那个s去掉.
由配岁此可见,数学不断发展.数学,会在今后的日子里,演变成一种培锋睁以点为中心基升的数据
‘捌’ 数学发展经历了哪五个阶段性
目前学术界通常将数学发展划分为以下五个时期:
(一、)萌芽数学时期(公元前600年以前);
(二、)常量数学时期(前600年至17世纪中叶);
(三、)变量数学时期(17世纪中叶至19世纪20年代);(四、)近代数学时期(19世纪20年代至第二次世界大战);(五、)现代数学时期(20世纪40年代以来)。
1(前3500-前500)数学起源与早期发展: 古埃及数学、美索不达米亚(古巴比伦)数学
2(前600-5世纪)古代希腊数学:论证数学的发端、欧式几何
3(3世纪-14世纪)中世纪的印度数学、阿拉伯数学:实用数学的辉煌
4(12世纪-17世纪)近代数学的兴起:代数学的发展、解析几何的诞生
5(14世纪-18世纪)微积分的建立:牛顿与莱布尼茨的微积分建立
6(18世纪-19世纪)分析时代:微积分的各领域应用
7(19世纪)代数的新生:抽象代数产生(近世代数)
8(19世纪)几何学的变革:非欧几何
9(19世纪)分析的严密化:微积分的基础的严密化
10二十世纪的纯粹数学的趋势
11二十一世纪应用数学的天下
以上是按数学发展的脉络进行划分的,不是按时间顺序,时代也都标注了。
‘玖’ 现代数学和现代物理学,已经发展到了何等恐怖的地步
其实现代物理理论发展的最直观的一个特点就是从直观走向了抽象。总体来说,我们的物理学和数学其实是在处于螺旋上升的阶段,只不过现在这个速度已经放缓了。很多人都曾经表示过,在近百年来我们的物理学界和数学界已经没有出现过很大的突破。
爱因斯坦时期就更加的过分,这个时候我们所要谈论的物理其实已经远远超过了我们的实际生活,更多的是谈论时空观念。而在爱因斯坦后期,又有了量子力学,量子力学,后边儿更有统一场论,都是一些看不见摸不着的东西,甚至有一些东西到现在为止则丛都没有办法得到证实。不过在这发展的过程当中,物理学和现代数学结合的却是越来越紧密。我目前的成就而言,现在数学和物理学在未来很可能会结合到一起,对我们的宇宙形成一个新的解释。
‘拾’ 数学的发展史
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展。
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。
(10)数学发展到了什么地步了扩展阅读:
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。
第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统。
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
参考资料来源:网络-数学