导航:首页 > 数字科学 > 小学数学中概念课怎么读

小学数学中概念课怎么读

发布时间:2023-05-01 18:51:50

1. 如何有效开展小学数学高年级概念课教学

教师数学概念教学的质量,直接影响着学生学习数学的质量。学生的逻辑思维能力、空间想象能力、运算作图能力、灵活解答问题能力以及探索求异能力等等无一不是以清晰、确定的概念为基础的。这些能力的高低与相应概念明确、理解的深度、广度有着密切的联系。实践证明,加强概念教学是切实提高小学数学教学质量的有效策略。那么在当前积极开展课堂教学有效性研究的背景下,应该如何有效开展小学数学高年级概念课的教学呢?
一、 创设有效生活情境,引入概念。
情境创设是一节课的眼睛,是可以顾盼生辉的。而数学概念是抽象枯燥的,因此教学中一定要把概念放在一个丰富的,典型的,自然的现实生活情境中引入,这样才能站在学生的心理需求上。在每节数学课中,都应极力捕捉生活中的数学问题,从学生的生活实际引入概念。
例如: 【用字母表示数】
师:“同学们,你们喜欢玩扑克牌吗?”
教师出示四张扑克牌,10、J、Q、K,问:“这四张牌中谁最大呢?为什么?”生:“K最大,因为K表示13。”
师:“那Q表示多少?J呢?”
在学生回答后,教师总结:“也就是说这几个字母都表示一个数。今天我们就学习用字母表示数。”
在这个环节中把学生喜欢并熟知的扑克牌与数学联系了起来,既结合了学生的生活实际从鲜活的生活情境引入新课,又激发学生的学习兴趣,让学生全心投入课堂,激发了学习热情,学生兴趣十分浓厚。
二、 大量感知,深入理解概念。
概念的形成是一个积累渐进的过程,因此在概念的教学中要遵循从具体到抽象,从感性认识到理性认识的原则。小学生的思维特点是从具体形象思维逐步向抽象思维过渡的。这种过渡在很大程度上还是依靠丰富的感性材料,从各种类型的感知材料中概括抽象出数学概念。数学概念不是靠老师讲出来的,而是靠学生自己去体验、感悟的。
如:【百分数的认识】
在学生认识了百分数以后,初步感知百分数的意义和作用。然后通过大量的资料,如“姚明加盟NBA联赛的第一年,投篮命中率为49.8%;日本的森林覆盖率高达65%,我国的森林覆盖率仅14%;期中考试六一班合格率99.6%,优秀率72.2%;洋快餐的营业额是中式快餐营业额的220%”等,通过这些让学生在现实情境中深入理解百分数的现实意义。在学生已经积累了大量的感性材料后,让学生用自己的话概括百分数的意义,水到渠成。
三、 通过对比、练习引导学生理解概念。
着名教育家乌申斯基说过:“比较是一切理解和思维的基础,我们正是通过比较才了解世界上的一切的。”在概念教学中,会有很多相似或相近的概念非常容易混淆。在这种情况下,通过比较找出概念间的相同点与不同点,弄清其区别与联系。这样不仅可以加深概念的理解,又可以强化新知。
如“数位”与“位数”, “时间”与“时刻”,“化简比”与“求比值”等等很多的易混概念都可以运用对比辨析的方法来加以区别。对比练习最能体现数学知识的联系与区别,培养学生的知识迁移往往体现在对比练习中,比如,出示12:8,让学生进行化简比和求比值的计算,把化简比和求比值放在一起让学生解答,一般不会出现错误,学生很容易知道3:2和2/3的区别,假如单单地把12:8化简比或求值,学生或多或少地出现错误,把化简比也当作求比值来做。再比如,比是分数比或小数比,错误率则更高。通过较多的对比练习,学生自然地发现其中还有很多规律可寻,(化简过的比写成分数形式则就是我们要求的比值)等。
四、 在质疑问难中深化概念理解
概念的有些重要特征,如果仅靠教师的强调或表面的揭示,不一定能收到好的教学效果,而如果留有一定的空间让学生质疑,在解决问题中深化理解反而会使概念更加完善。“思缘于疑”,人的思维活动都是从疑问开始的,没有疑问就没有思考。因此,在概念的形成中教师有意识地让学生质疑,可促进学生对概念的理解。
如:【商不变的规律】教学片断
1、观察发现:学生在通过对一组算式的观察对比后发现被除数与除数同时乘相同的数,结果不变。
2、引导学生归纳:谁能用一句完整的话概括一下我们刚才发现的规律,汇报小结后出示:被除数和除数同时乘相同的数,商不变。
3、质疑:被除数和除数同时乘0,商还不变吗?
4、引导学生再次归纳:被除数和除数同时除以相同的数(零除外),商不变。
5、试一试,验证规律。
现实生活中这样的例子有吗?生举例验证商不变规律。
五、 将概念逐步构建成网络,使其系统化
学生总是从具体的孤立的概念开始学起,即使在教学时注意了概念之间的某些联系,也往往是为了学习的新概念的需要。因此,在小学生的头脑中,概念常常是孤立的、互不联系的。我们在教学时就一定要引导学生把学过的概念放在一起,寻找概念之间纵向或横向的联系,组成概念系统,使教材中的数学知识转化成为学生头脑中的认知结构,这种系统化了的认知结构,不仅有利于巩固对概念的理解,也促进了知识的迁移,发展了学生的数学能力。
如: 【比的认识】
在教学比的认识之后,让学生通过比、分数、与除法之间的联系与区别进行梳理,沟通了三者之间的内在联系。为今后教学分数应用题时算法的多样化奠定了基础。将比、分数、除法进行对比,遵循知识的内在联系,帮助引导学生建立良好的认知结构。不仅使学生体会到了概念之间的相互联系,更是一个把知识网络构建完整的过程。在学习具体的孤立的概念时,不会很深刻地认识到这些概念的本质,只有从整个知识体系中才有可能更深刻地理解它们,知道它们在整个体系中的地位和作用。
六、 概念教学中要重视情感体验
新课标中明确指出:“要让学生参与特定的数学活动,在亲身体验中学习数学”。在概念课的教学中我们也要重视学生的情感体验。从生活实际中引入概念时,可以使学生体验数学知识的生活化;在大量的操作活动中探究知识时,可以使学生体验到概念的形成过程;在师生互动交流时,可以使学生体验到成功的乐趣;在把概念应用到生活中时,可以使学生体验到数学的应用价值。
数学概念是客观世界中数量关系和空间形式的本质属性在人脑中的反映。所有的数学知识无一不是建立在一系列数学概念的基础上的。计算、几何初步知识、代数初步知识、以及运用数学知识去解决简单实际问题的能力,都是以数学概念的掌握为前提和保证的,只有有效开展概念教学,才能使学生在获取数学知识的同时,进一步培养各种数学能力,发展学生的思维。

2. 小学数学概念教学中涉及哪些概念

一、算术方面

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

数量关系计算公式方面

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

有余数的除法: 被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、 1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。 1亩=666.666平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化发。

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)

17、互质数: 公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)

21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3. 141592654

33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

34、什么叫代数? 代数就是用字母代替数。

35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c

一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数

2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3 速度×时间=路程路程÷速度=时间 路程÷时间=速度

4 单价×数量=总价总价÷单价=数量 总价÷数量=单价

5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6 加数+加数=和和-一个加数=另一个加数

7 被减数-减数=差被减数-差=减数 差+减数=被减数

8 因数×因数=积积÷一个因数=另一个因数

9 被除数÷除数=商被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1 正方形 C周长 S面积 a边长

周长=边长×4 C=4a

面积=边长×边长 S=a×a

2 正方体 V:体积 a:棱长

表面积=棱长×棱长×6 S表=a×a×6

3. 如何上好小学数学概念课

方法:

1、概念引入的教学策略 :

儿童学习数学概念有一个学习准备的过程,这个过程就称为“概念的引入”。良好有效的概念引入有助于学生积极主动地去理解和掌握概念。

2、 概念建立的教学策略 :

概念建立是概念教学的中心环节。由于小学生的思维特点处于由形象思维像抽象逻辑思维过度的阶段,因此,弊伍小学生学习数学概念大多以“概念形成”的形式为主。数学概念的形成,一般要经过直观感知,建立表象,解释本质属性三个过程。

3、 概念巩固的教学策略 :

学生对概念的掌握不是一次就能完成的,猛卜此要由具体到抽象,再由抽象到具体多次往复。当学生初步建立概念后还需枝迅要运用多种方法,促进概念在学生认知结构中的保持,并通过不断运用加深对概念的理解和记忆,使新建立的概念得以巩固。

4. 小学二年级数学“倍”的认识,概念课要如何上好

【教学内容】
义务教育新课标二年级数学上册第76页例2,例3,“做一做”及练习十七第1、4题,倍的认识教案。
【教学目标】
1、经历“倍”的概念的初步形成过程,体验“一个数的几倍”的含义。
2、在充分感知的基础上建立“一个数的几倍是多少”的计算思路。
3、培养学生操作、观察、推理能力及善于动脑的良好学习习惯和对数学的学习兴趣。
【教学重点】经历“倍”的概念初步形成过程,建立“倍”的概念。
【教学难点】建立“求一个数的几倍是多少”的计算思路。
【教学准备】
多媒体课件、小棒、图片。
【教学过程】
一、创设情境,引入新课
1、出示课件。
师:今天的数学课,老师要介绍一位新朋友给同学们认识,它就是小狗菲菲,小学数学教案《倍的认识教案》。◆分享好文◆这节课,我们的新朋友菲菲将和同学们一起学习数学知识,同学们原意吗?
2、学生活动。
师:上课前,老师请一些同学上来。
师叫3名女同学站在第一排,再叫6名男同学站在第二排(3个3个地站在一起)。
师:第一排有几个女同学?(3个)第二排有几个3?(2个3)
生回答后,师引出课题:像这种情况,我们就说男同学是女同学的2倍。今天,老师就和同学们一道,学习“倍”的认识。(板书课题)
二、动手操作,探究新知。
(1)初步形成“倍”的概念。(教学例2)
菲菲有三个好朋友,他们正在用小棒摆正方形,下面我们来看看他们摆的情况,用了多少根小棒。(课件演示例2中第一个小朋友,摆了一个正方形)
学生观察。你知道了什么?
生:摆了一个正方形用了4根小棒。
4根小棒还可以说是几个?
生:一个4根。
下面我们来看看另外两个小朋友,他们摆图形的时候用了几个几根。
出示例2中另外两个小朋友摆的两个和三个正方形。
学生观察。
学生说自己的发现。
引导学生得出:2个4根,3个4根
(板书:2个4根,3个4根)
揭示倍的含义,指出第三个学生摆的小棒说:第三个同学摆了3个4根,3个4根也可以说成4的3倍。
让学生反复说几遍。
(2)巩固“倍”的概念。
判断第二行是第一行的几倍?生解答时,师要求学生说出想的过程。
(3)教学例3。
①出示例3,问:同学们会摆吗?下面,同学们自己动手摆摆看。
②要求第二行有几个图片,应怎样列式?为什么?
③小结:要求一个数的几倍是多少,也就是求几个几是多少,用乘法计算。
三、拓展延伸,巩固深化。
1、拍手游戏。
师拍表示一倍的次数,生按要求有节奏地拍表示几倍的次数。
2、76页“做一做”。
3、78页第1题。
四、全课小结。
同学们,今天你们有什么收获呢?

5. 如何上好小学数学概念课

数学课的课型有讲授数学概念的概念课、讲授数学方法的方法课、一个单元或者章节的复习课、针对试卷习题的讲评课,就我的教学感悟而言,我认为最难上的是数学概念课,急需要上好的还是数学概念课,因为数学概念教学是数学教学当中的首道工序,学生对概念的理解和把握是否准确,将直接影响到后续数学学习的效果,因此我认为数学概念的表述应当用精炼的语言,准确无歧义地反映概念的本质特征.一节好的数学概念课的教学设计需要思考:概念教学一般可以分为哪几个阶段?各个阶段分别要侧重解决什么问题?数学坦山概念课的教学设计关键在于科学地、艺术地处理教材内容,唤起学生强烈的求知欲,从学生熟悉的、亲身感受的生活经验入手,将其数学化,应该有概念的引入、概念的辨析、概念的深化和概念的巩固这样四个阶段,在教材基础上,让学生知识迁移,主动构建对新概念认识,在小学数学概念的教学中,有些概念可以通过与生活实际的直接联系而获得.但也有很多数学概念并不能以此途径获得,他们往往只能用语言对其作出界定,学生需要理解这些语言的内涵和外延,才能获得其确切的含义.从整个章节内容来考虑,先让学生见识概念,为他以后的学习打下基础.通过学生举反例来加深对概念的认识理解,必要时概念的分析更需咬文嚼字,只有这样才可以突出概念的本质.\x0d概念的引入侧重引起学生的注意,激发学生的兴趣,体现概念的本质,蕴含概念发生的思维方法,做到先声夺人.引入的方式有很多,常见的有下面四种:一,数学故事引入数学概念;二,通过学生已有的知识和经验引入概念;三,动手操作引入数学概念;四,通过实际问题引入数学概念.\x0d概念分析我们还要善于从逆向分析,通过反例来阐述,概念的分析,必要时我们会适当应用多媒体动画,解决其抽象的问题,通过多媒体能把抽象问题具体化,给一个学生感性的认识.对概念的理解,特别是对一些重要的概念的理解,常常不是一节课可以解决问题的,需要我们把它放在整个数学课程让念中中去认识一些概念,在这节课上对这个概念,我把握到什么程度,以后在哪个地方去拓展这些概念,我们可以去讲题,但是我们讲题的目的是是提高学生的素养,提高对某些概念的认识,加深对某些概念的理解,概念的教学,不只是在概念课上才出现,对概念的认识,应高改该成为我们在其他课型中随时随地都应该关注的一个出发点.所以作为概念课来说,它既强调概念的讲解,又渗透在其他的课中,发挥出概念课的最大的效率\x0d菏泽市牡丹区第二中学\x0d数学概念是每一个内容的灵魂,只有把数学概念讲好了我们才能够很好的去利用它.但是数学概念只是一些描述性的语言,要想让学生很好的掌握它,下面我谈几点看法:\x0d数学概念教学一般分为三个部分:引入,分析,应用.\x0d概念的引入一定要侧重引起学生的注意力,激发学生的学习兴趣.在新课标中提到数学概念的引入要情境化,要顺其自然,而不能强加于人.在设置情境是一定要合乎学生的认知规律,要贴近生活,而不要刻意讲究形式.\x0d在分析的过程中正确、充分地提供概念的各种变式.适当应用反例,罗列一些似是而非容易产生错误的对象让学生辨析,是促进学生认识概念的本质、确定概念的外延的有效手段.\x0d在概念的系统学习过程中让学生有机会不同的角度认识概念,这不仅便于发挥知识的结构功能,使概念具有“生长活力”\x0d,有益于知识的获得、保持和应用,而且对发展学生的概括能力有特殊的意义.精心设计练习,在应用中强化概念间的联系,巩固概念网络,加深概念的理解.

6. 如何进行小学数学概念课教学

如何进行小学数学概念课教学?数学概念是反映数学对象的本质属性和特征的思维形式。小学数学中反映数和形本质属性的数字、图形、符号、名词术语和定义、法则等都是数学概念。 今天,朴新小编给大家带来数学教学方法。

发现概念 领悟概念

小学生的认知特征是从具体逐渐过渡到抽象。进行概念教学时,教师应尽可能将数学知识与学生在日常生活的、熟悉的、具体的材料相联系,这样就有利于抽象的数学概念具体化、形象化,便于学生的理解,同时也能激发学生的思维和探索新知的欲望。例如学习“百分数的意义”时,教师出示一组在日常生活中经常见的数据:有一商场的衣服降价10%;六(3)班同学的体育合格率达98%;今年城镇人口人均收入比去年增长12.5%……让学生初步感知什么样的数是百分数。学生根据上述的材料会提出一系列的问题:百分数的意义是什么?有什么作用?怎样读?怎样写?百分数与分数有什么不同……有了这样的开始,再来学习“百分数”的概念就显得轻松自然了。再如:开始学习“角”,教师凭借常见的直观实物(五角星、三角板等),帮助学生理解“角”的意义。

对于发展性概念,一般采用课前预习、课堂复习的方式,让学生在已有知识和智力能力的基础上,通过已有的概念去认识新的概念,使新概念在已有的概念中深化,产生新的知识,即在旧概念的基础上引入新概念。如,讲“比的化简”时为了讲清“最简单的整数比”这一概念,可以引导学生回忆运用分数的基本性质约分的道理,复习“最简分数”的概念,这样,学生很快理解了“最简单的整数比”就是“比的前项和后项是互质数的比”。再进一步指出化简比的方法与约分方法相同,但要注意如果比的前项和后项有小数或分数,必须转化成整数比再化简。这样,学生在学习中,就能找出新概念与已有的相关概念的联系与区别,实现知识的迁移,同时也巩固了旧知识。

7. 浅谈在小学数学中如何有效进行概念教学

数学概念不仅是小学数学知识的基本要素,也是培养和发展学生数学能力的重要内容。对它的理解和掌握,关系到学生学习数学的兴趣,关系到学生计算能力和逻辑思维能力的培养,关系到学生解决实际问题的能力。由于小学生的年龄特点,直观形象思维制约了对数学中抽象概念的掌握,导致孩子们在学习和运用概念的过程中,经常出现这样或那样的错误。那么,怎样才能使数学概念教学更有效呢?
一、数学和生活实际联系,引入概念
数学知识来源于生活,又应用于生活。把点滴生活经验变成系统数学知识目的在于使其更好地运用到生活中去,除了在课堂上一些与生活相连的习题更好体会知识的还是生活本生。
例如,在教学《认识钟表》时,认识整时和大约几时这两个数学概念本身就比较抽象,你若直接告诉孩子看钟点的方法:分针对着12,时针对着几就是几时,1时=60分,1分=60秒,孩子未必真正理解,而且长期地这样教学学生就不会去思考,产生一种依赖的心理。因此我们在课起始时便以猜谜揭示课题,而后分认识钟面,认识整时和大约几时三步走。认识钟面环节让学生根据已有经验说说钟面的认识,为了让学生的介绍更为有针对性把提问变成“你知道钟面上有什么?”这样学生根据手中的闹钟很容易回答。在学生拨钟也让学生自由的拨出一些整时并说说在这一时刻在干什么,这样学生对各个时段的认识就能联系生活而不仅仅停留在1~12各个数上。在“两个8时”这一环节,让学生根据生活经验充分的讨论两个8时的存在和不同,再指导学生会照样子用一句话说一说,同时从数学角度提醒学生在平时说话时要注意用上“早晨、上午、下午、晚上” 等词语,这样说起来就更清楚明白。钟面、整时和大约几时三个环节层层递进,每一个环节与学生经验紧密联系。
低年级小学生,由于年龄、知识和生活的局限,理解一个概念主要是凭借事物的具体形象。因此,在低年级数学概念教学的过程中,要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。
二、迎合学生学习兴趣,引入概念
托尔斯泰说过:“成功的教育所需要的不是强制,而是激发学生的兴趣。”兴趣是成功的秘诀,是获取知识的开端,是求知欲的基础。学生对学习数学的兴趣,直接影响到课堂教学效率的高低。抽象的理论如果再加上干巴巴的讲解,必然不会引起学生的学习兴趣。
例如,在教学《认识角》时, 既要让学生感知直角、锐角、钝角等不同种类的角,又要注意变化角的大小和角的开口方向,这样才能获得对角的清晰认识。教师可以事先做好一个只露出三角形一个角的教具,让学生观察露出的一个角,判断整个三角形是什么三角形。当露出一个直角时,学生马上回答这是个直角三角形;当露出一个钝角时,学生马上回答这是个钝角三角形;当露出一个锐角时,学生就自然而然地回答这是个锐角三角形。这时教师拿出的却不是锐角三角形,这样,学生就有了悬念:为什么有一个直角的是直角三角形,有一个钝角的是钝角三角形?而一个角是锐角的三角形就不一定是锐角三角形了呢?这时学生强烈的求知欲已经成为一种求知的“自我需要”,学生的学习兴趣得到了激发,使兴趣成为学生学习的动力,为教学新概念创造良好的学习气氛,使学生在获得概念的整个过程中感到学习的快乐。
三、动手操作,引入概念
低段小学生他们爱摆弄东西,什么都想尝试。但若遇到困难而无法解决时,操作的积极性就会下降。所以利用学生这种心理适当安排动手尝试的学习内容可以激发起学生的学习兴趣,更好得形成概念。
例如,在教学《米和厘米》时,在认识了“厘米”以后我安排学生通过测量,看看你身体上哪个部位的长度最接近一厘米。学生的积极性很高,先是拿出尺子不停的比划,然后三五成群的议论开了,积极主动地去寻求答案。在交流想法时,小朋友不仅给出了我想要的答案,更让我收获了不少的惊喜。
学生在操作、实践中获得感性认识,经历“充分感知-丰富表象-领悟内涵”的过程,在头脑中切实、清楚地建立了1厘米的实际长度和空间观念,突出了本节课的教学重点。
四、巧用多媒体,引入概念
应用多媒体辅助教学,充分激活课堂教学中的各个要素,全方位地调动和发挥教师在课堂教学中的主导作用和学生学习的主体作用,建立合理的教与学的关系,
例如,在教学《认识分数》时,我设计了这样一个动画:周末,同学们去野餐,在优美的音乐的声中,一群活泼可爱的小朋友来到了郊外,贴近生活化的情境一下子就吸引了学生的注意力。跟着提出问题:“把8个苹果和4瓶果汁平均分给2人,每人分得多少”?学生回答后动画演示分得的结果,非常直观地显示出“平均分”,加强了学生对“平均分”这个概念的理解。接着提出:“把一个生日蛋糕平均分成2份,每人分得多少”?演示“一半”,提出“一半”用什么数来表示?自然地引出本节课要研究的认识分数。
我们在教学中,要结合概念的特点和学生的实际,灵活掌握使用,优化数学概念教学,提高概念教学的有效性,更好地进行概念教学。

8. 小学数学中如何进行概念教学案例

注重概念的形成过程

许多数学概念都是从现实生活中抽象出来的,讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。

例如,负数概念的建立,展现知识的形成过程如下:①让学生总结小学学过的数,表示物体的个数用自然数1,2,3…表示;一个物体也没有,就用自然数0表示:测量和计算有时不能得到整数的结果,这就用分数。②观察两个温度计,零上3度。记作+3°,零下3度,记作-3°,这里出现了一种新的数――负数。③让学生说出所给问题的意义,让学生观察所给问题有何特征。④引导学生抽象概括正、负数的概念。

深入剖析,揭示概念的本质

数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延,也就是从质和量两个方面来明确概念所反映的对象。如,掌握垂线的概念包括三个方面:①了解引进垂线的背景:两条相交直线构成的四个角中,有一个是直角时,其余三个也是直角,这反映了概念的内涵。②知道两条直线互相垂直是两条直线相交的一个重要的特殊情形,这反映了概念的外延。③会利用两条直线互相垂直的定义进行推理,知道定义具有判定和性质两方面的功能。另外,要让学生学会运用概念解决问题

加深对笑衫概念本质的理解。如“一般地,式子根号a(a≥0]叫做二次根式”这是一个描述性的概念。式子根号a(a≥0)是一个整体概念,其中a≥0是必不可少的条件。又如,讲授函数概念时,为了使学生更好地理解掌握函数概念,我们必须揭示其本质特征,进行逐层剖析:①“存在某个变化过程”――说明变量的存在性;②“在某个变化过程中有两个变量x和u”――说明函数是研究两个变量之间的制约关系;③“对于x在某一范围内的每一个确定的值碰芦腔”――说明变量x的取值是有范围限制的,即允许值范围;④“u有确定的值和它对应”――说明哗宽有确定的对应规律。由以上剖析可知,函数概念的本质是对应关系。

9. 如何进行小学数学概念教学

————论如何在小学数学教学中用好概念数学
现在很多小学生对学习数学的积极性不高,缺乏学习兴趣,认为数学特别难学。我们只要认真分析,就不难发现,主要是学生对一些数学概念没有搞清楚。如:12的最大约数与最小倍数是相等的。学生却判断是错误的,本题涉及 “因数”、一个“自然数”的因数是“有限的”,最小的是1,最大的是它本身。“倍数”、一个自然数的倍数是“无限的”,最小的是它本身,最大的没有。还有“相等”。学生出现错误,说明学生对数学概念没有理解掌握好。数学概念是“双基”(即基础知识和基本技能)教学的核心内容;是基础知识的起点;是逻辑推理的依据;是正确、合理、迅速运算的保证。学生正确、清晰、完整地掌握数学概念,是掌握数学知识的基础。如果学生对概念不明确,也会影响学生的学习兴趣和学习效果。如果不懂什么是“分数”和“分数单位”,就很难理解分数四则运算法则的算理,就会直接影响分数四则计算能力的提高。正确、迅速、合理、灵活的计算能力只有在概念清楚的基础上,掌握计算法则,经过适当练习才能形成。学生概念清楚了,才能进行分析推理;逻辑思维能力和解决问题的能力才能不断提高。因此,在教学中如何使学生形成概念,正确地掌握和运用概念是极为重要的。数学教学过程,就是“概念的教学”。一个数学教师,要把概念教学放到突出地位。小学数学中的一些概念,对小学生来说,由于年龄小,知识不多,生活经验不足,抽象思维能力差,理解起来有一定的困难。因此教师在有关概念的教学过程中,一定要从小学生年龄实际出发,这样才会收到好的教学效果。
一、教学中让学生理解数学概念
1.直观形象地引入概念
数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。如在教平均数应用题时,我利用铅笔做教具,重温“平均分”的概念。我用9个同样大的小木块摆出三堆,第一堆1块,第二堆2块,第三堆6块,问:“每堆一样多吗?哪堆多?哪堆少?”学生都能正确回答。这时,我又把这三堆木块混到一起,重新平均分三份,每份都是3块,告诉学生“3”这个新得到的数,是这三堆木块的“平均数”。我再演示一遍,要求学生仔细看,用心想:“平均数”是怎样得到的。学生看我把原来的三堆合并起来,变成一堆,再把这堆木块分做3份,每堆正好3块。这个演示过程,既揭示了“平均数”的概念,又有意识地渗透“总数量÷总份数=平均数”的计算方法。然后,又把木块按原来的样子1块,2块、6块地摆好,让学生观察,平均数“3”与原来的数比较大小。学生说,平均数3比原来大的数小,比原来小的数大,这样,学生就形象地理解了“求平均数”这一概念的本质特征。
2.运用旧知识引出新概念
数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。我就充分运用旧知识来引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在的联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。苏霍姆林斯基说:“教给学生能借助已有的知识去获取知识,这是最高的教学技巧之所在。”从心理学来分析,无恐惧心理,学生容易活跃;无畏难情绪,易于启发思维;旧知识记忆好,容易受鼓舞;所以运用旧知识引出新概念教学效果好。例如从求出几个数各自的“倍数”从而引出“公倍数”、“最小公倍数”等概念。总之,把已有的知识作为学习新知识的基础,以旧带新,再化新为旧,如此循环往复,既促使学生明确了概念,又掌握了新旧概念间的联系。
3.通过实践认识事物本质、形成概念
常言说,实践出真知,手是脑的老师。学生通过演示学具,可以理解一些难以讲解的概念。如一年级小学生初学数的大小比较。是用小鸡小鸭学具,一一对比。如一只小鸡对一只小鸭,第二只小鸡对第二只小鸭,……直到第六只小鸡没有小鸭对比了,就叫小鸡比小鸭多1只。又如二年级小学生学习“同样多”这个概念也是用学具红花和黄花,学生先摆5朵红花、再摆和红花一样多的5朵黄花,这样就把“同样多”这个数学概念,通过演示(手),思维(脑),形成概念,符合实践、认识,再实践、再认识的规律。这比老师演示、学生看,老师讲解、学生听效果好,印象深、记忆牢。
4、从具体到抽象,揭示概念的本质
在教学中既要注意适应学生以形象思维为主的特点,也要注意培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程去掌握概念。这样,可以培养学生的逻辑思维能力。如圆周率这个概念比较抽象。一般教师都是让学生通过动手操作认识圆的周长与直径的关系,学生通过观察、思考,分析,很快就发现不管圆的大小如何,每个圆的周长都是直径的3倍多一点。教师指出:“这个倍数是个固定的数,数学上叫做“圆周率”。这样,引导学生把大量感性材料,加以分析综合,抽象概括抛弃事物非本质东西(如圆的大小,纸板的颜色,测量用的单位等)抓住事物的本质特征(不论圆的大小,周长总是直径的3倍多一点)。形成了概念。
5、用“变式”引导学生理解概念的本质
在学生初步掌握了概念之后,我经常变换概念的叙述方法,让学生从各个侧面来理解概念。概念的表述方式可以是多种多样的。如质数,可以说是“一个自然数除了1和它本身,不再有别的因数,这个数叫做质数。”有时也说成“仅仅是1和它本身两个因数的倍数的数”。学生对各种不同的叙述都能理解,就说明他们对概念的理解是透彻的,是灵活的,不是死背硬记的。有时可以变概念的非本质特征,让学生来辨析,加深他们对本质特征的理解。
6、对近似的概念加以对比
在小学数学中,有些概念的含义接近,但本质属性有区别。例如:数位与位数、体积与容积,减少与减少到等等相对应概念,存在许多共同点与内在联系。对这类概念,学生常常容易混淆,必须把它们加以比较,避免互相干扰。比较,主要是找出它们的相同点和不同点,这就要对进行比较的两个概念加以分析,看各有哪些本质特点。然后把它们的共同点和不同点分别找出来,使学生既看到进行比较对象的内在联系,又看到它们的区别。这样,学的概念就会更加明确。对近似的概念经常引导学生进行比较和区分,既能培养学生对易混概念自觉地进行比较的习惯,也能提高学生理解概念的能力。多年来教学实践的体会:重视培养学生的比较思想有几点好处:(1)有利于培养学生思维的逻辑性。(2)有利于提高学生的分析问题的能力。(3)有利于培养学生系统化的思维方式。
5、教师要帮助学生总结归纳出概念的含义
教学中学生的主体地位是必要的,但教师在教学的全过程中的主导地位也不能忽视。教师应发挥好主导作用。教师与学生的主、客体地位是相互依存,在一定条件下又相互转化。在概念教学中,教师要善于为学生创造条件,让学生沿着观察、思维、理解、表达的过程,由感性到理性的过程,由具体到抽象的过程去掌握概念。这样极易调动学生的积极性、主动性,也可以教会学生去发现真理。比如我教质数,合数两个概念。我先板书几个数:1、2、3、4、5、6、8、9、11、12,让同学分别写出每个数的因数来。为了便于学生观察,有意识地做如下的排列,学生写出下列答案:
1——1 2——1、2 6——1、2、3、6
3——1、3 4——1、2、4
5——1、5 8——1、2、4、8
11——1、11 9——1、3、9
12——1、2、3、4、6、12
订正后,让学生仔细观察,找自然数的因数规律。学生观察后发现了规律。有的说有三种规律,有的则认为四种情况。我表扬同学观察分析得好。是三种规律。于是又启发他们看是哪三种?①一个自然数只有一个因数;②一个自然数有两个因数;③一个自然数有三个以上因数。在这个情况下,我再次启发:一个因数的是什么样的数?两个的是什么样的?三个以上又是什么样的因数?学生则发现一个的只有1;两个的则有1还有本身;三个以上的则有1、自己本身、还有其它的因数。最后老师一一肯定,并由学生看书后总结出质数、合数概念,这时学生很受鼓舞,认为自己发现了真理。对质数、合数的概念印象极为深刻永不忘记。我又有意识地让学生研究“1”到底算哪类?学生沉默了,我说:“从书上找找是怎么说的?知道的就发言”。通过学生的口,说出“1”既不是质数,也不是合数。我问:“为什么”?学生答:因为“1”的因数只占一条,算1就没有本身,算本身又没有“1”,这样可比老师直接告诉、或叮咛他们注意主动。让学生在教师的帮助下,把大量感性材料经过分析综合,抽象概括。抛弃事物和现象的非本质的东西,抓住事物和现象的本质特征形成概念。因为是学生付出了脑力劳动而获取得到的,所以容易理解,记忆也牢固。
二有效巩固概念
教学中不仅要求学生理解概念,而且还要使学生熟记并灵活地运用概念。我认为概念的记忆与应用是相辅相成的。因此在教学中,加强练习,及时复习并做归纳整理,对巩固概念具有特殊意义。
1、学过的概念要归纳整理才能系统巩固
学习一个阶段以后,引导学生把学过的概念进行归类整理,明确概念间的联系与区别,从而使学生掌握完整的概念体系。如学生学了“比”的全部知识后,我帮助他们归纳整理了什么叫比;比和除法、分数的关系;比的基本性质,利用比的基本性质,可以化简比;这一系列知识复习清楚之后,才能很好地解决求比例尺三种类型题和比例分配的实际问题。只有把比的意义理解得一清二楚,才能继续学习比例。表示两个比相等的式子叫做比例。这样做,就构成了一个概念体系,既便于理解,又便于记忆。概念学得扎扎实实,应用概念才会顺利解决实际问题。
2、通过实际应用,巩固概念
学习的目的是为了解决实际问题。而通过解决实际问题,势必加深对基本概念的理解。如学生学了小数的意义之后,我就让学生利用课外时间,到商店了解几种商品的价钱,写在作业本上,第二天让他们在课上向大家汇报。通过了解的过程,非常自然地对小数的意义,读、写法得以运用与理解。又如学了各种平面图形后,我让学生回家后,观察家里那些地方有这些平面图形。通过这种形式的作业,学生感到新鲜,有趣。这不仅巩固了所学概念,还提高了学生运用数学概念解决实际问题的能力。
3、综合运用概念,不仅巩固概念,而且检验概念的理解情况。
在学生形成正确的数学概念之后,进一步设计各种不同形式的概念练习题,让学生综合运用、灵活思考、达到巩固概念的目的,这也是培养检查学生判断能力的一种良好的练习形式。这种题目灵活,灵巧,能考察多方面的数学知识,是近些年来巩固数学概念一种很好的练习内容。
练习概念性的习题,目的在于让学生综合运用,区分比较,深化理解概念。所安排的练习题,应有一定梯度和层次,按照概念的序,学生认识的序去考虑习题的序。要根据学生实际和教学的需要,采用多种形式和方法设计,借以激发学生钻研的兴趣,达到巩固概念的目的。尤其应组织好概念性习题的教学,引导学生共同分析判断。
多年来的教学实践,使我深刻地体会到:要想提高教学质量,教师用心讲好概念是非常重要的,既是落实双基的前提,又是使学生发展智力,培养能力的关键。但这也仅仅是学习数学的一个起步,更重要的是在学生形成概念之后,要善于为学生创造条件,使学生经常地运用概念,才能有更大的飞跃。只有学生会运用所掌握的概念,才能更深刻地理解概念,从而更好地掌握新的数学知识。只有这样,培养能力,发展智力才会有坚实的基础

10. 小学数学概念教学策略

概念教学是小学数学教学中最基础也是最重要的内容,概念教学能提高学生的推理分析、概括与归纳等思维能力。下面我来为大家介绍一下有关小学数学课堂概念教学的策略

小学数学概念课堂

一、小学数学概念教学存在的问题

新课改以来,概念课的教学取得了长足的进步,老师们大多能通过对大量事物、生活现象的感知、分析,操作、实验,进而归纳并抽象出概念。但毋庸置疑,数学概念教学还是比较忽视概念的形成过程,忽视概念间的相互联系,忽视概念的灵活应用,具体存在以下问题:

首先,教师心中没有一个宏观的“概念”,即不能将整个小学数学概念体系串联起来。往往习惯于把各个概念分开讲述,孤立地进行概念教学。尽管这也是课时设置的需要,教学进度的需要,但如果不能引导学生将概念串联起来,学生掌握的各种数学概念就显得零零碎碎,这不仅给概念的记忆增加了难度,更加重了学生理解和应用概念的困难。

第二,概念教学脱离现实情境。学生往往把概念强记下来,然后通过大量的强化练习来巩固概念。这种死记硬背的学习方式有着很大的消极影响,由于学生并没有理解概念的真正涵义,一旦遇到实际应用时就感到一片茫然。

第三,数学概念的形成没有建立在学生已有的认知基础上。数学概念的形成,是一个不断建构与加深的过程。引导学生准确地理解概念,明确概念的内涵与外延,正确表述概念,这是概念教学应该达到的目标。而部分教师课堂教学中对概念的抽象、归纳过于仓促,学生尚未建立初步的感知,教师即已迫不及待地做出归纳总结。

二、小学数学概念课的基本环节

概念课的教学基本环节大致分为:概念的初步感知——概念的理解——概念的类比——概念系统的建构。

(一)概念的初步感知

数学概念是抽象的、严谨的、系统的,而小学生的心理特点则是容易理解和接受具体的、直观的感性知识。因此,我们在教学之始应该在数学与生活之间搭建起联系的桥梁,提供丰富、典型、有趣的材料,充实学生的感性认识。概念引入的途径是多样的,可以通过直观引入、计算引入,也可以从情境设疑引入、学生的生活实际引入、知识基础引入、新旧联系引入。

(二)概念的理解

小学生建立数学概念有两种基本形式:一是概念的形成,二是概念的同化。由于小学生的思维特点处于由形象思维逐步向抽象逻辑思维过渡的阶段,因此,小学生学习数学概念大多以“概念形成”的形式为主。概念的形成是一个累积、渐进的过程,是概念教学的中心环节。数学概念的形成一般要经过直观感知→建立表象→揭示本质属性三个阶段,直观感知和建立表象是建立概念的向导,概念本质属性的揭示是概念教学的关键。

(三)概念的类比

小学生对概念的掌握往往不是一次能完成的,要由具体到抽象,再由抽象到一般多次循环往复。当学生初步建立概念后还需运用多种方法,促进概念在学生认知结构中的保持,并通过不断运用,加深对概念的理解和记忆,使新建立的概念得以巩固。为了让学生巩固所学的概念,可以举出实例进行类比、辨析。

(四)概念系统的建构

概念总是一个一个进行教学的,因此在小学生的头脑中,概念常常是孤立的、互不联系的,教学进行到一定程度时,要引导学生把学过的概念放在一起,寻找概念之间纵向或横向的联系,组成概念系统,使教材中的数学知识转化成为学生头脑中的认识结构,以利于对知识的检索、提取和应用,促进知识的迁移,发展学生的数学能力。

三、小学数学概念课教学的策略初探

(一)在具象与抽象的碰撞中建构概念

在数学与生活之间搭建起联系的桥梁,给学生提供丰富、典型而有趣的感知材料。将数学概念教学置于现实背景中,让学生通过活动经历、体验数学与现实的联系,用探究学习等方法引领学生获得数学概念,这样建立起来的概念才具有丰富的内涵。采用的方式有:1.让学生结合动手操作与语言表达,说出每一个概念的意义;2.让学生试着找概念的外在表现、不同形式(外延);3.数形结合,或是借助转换等进行相关的练习。

(二) 在类比与变式中深化概念本质

概念教学一般应遵循“从生活中来——抽象成数学模型——到生活中去”这样一个过程,强调从学生已有的生活经验出发,初步学会应用数学的思维方式去观察、分析,亲身经历将实际问题抽象成数学模型并进行解释与应用,在一个单元或是一组概念学完后,进行综合应用。

例如,在教学有关圆的周长和面积概念之后,让学生先做一道基本题,分析学生出现的问题,一起解决。再让学生在原题的基础上变一变,做一点变式练习。这样的变式练习,给了学生一个转换角度思考问题的空间,通过“外延”,加深理解概念的内涵。

(三)在思维导图中构建概念体系

建构主义教学观认为,概念的建构需经多次反复,经历“建构—解构—重构”的过程。在理解和练习的基础上,我让学生将相关的概念内涵与外延制作成思维导图,也就是将知识形成网络图,达到触类旁通的目的。

例如,有关圆的周长的概念,我让学生动手画一画、围一围、量一量,再试着让学生用自己的语言来说一说“圆的周长”。比如有学生借助一个圆形物体,边摸边说。同时,我鼓励学生用不同的方法来表达自己的理解。也有学生说,任何一个圆的周长都是它的直径的三倍多一些。还有学生说一个圆的半径的二倍再乘圆周率就是它的周长了。有直接描述内涵的,也有借助外延来刻画的。课堂上的时间有限,于是,让学生回家讲给家人听,或是录制成小视频,发到班级的微信群里,分享给同学们听。相关练习后,再将前后的知识点形成一个网状。引导学生画出思维导图。

( 四 )在梳理与归纳中构建数学概念体系

教师想要给学生一棵“知识树”,自己得拥有“一片森林”。教师要明白每一个数学概念在整个数学概念体系中的位置与重要性,如此,在引导学生归纳与构建数学知识体系时就能做到得心应手。

在给学生“一棵树”之前,还得让学生看到进入森林的道路,不至于让学生进去后,只见树木不见森林,或是被教师牵着走。为了给孩子们主动去探索这片森林的路,可以结合当前的教学引导学生做一些相关的小研究,并让学生用数学周记表达自己的作品。

小学数学常用顺口溜

一、20以内进位加法

看大数,分小数,凑整十,加零头。

(掌握“凑十法”,提倡“递推法”。)

二、20以内退位减法

20以内退位减,口算方法和简单。

十位退一,个加补,又准又快写得数。

三、加法意义,竖式计算

两数合并用加法,加的结果叫做和。

数位对其从右起,逢十进一别忘记。

四、减法的意义竖式计算

从大去小用减法,减的结果叫做差。

数位对齐从右起,不够减时前位拿。

五、两位数乘法

两位数乘法并不难,计算过程有三点:

乘数个位要先算,再用十位乘一遍,

乘积末位是关键,要和十位来对端;

两次乘积相加完,层层计算记心间

六、两位数除法

除数两位看两位,两位不够除三位。

除到那位商那位,余数要比除数小,

然后再除下一位,试商方法要灵活,

掌握“四舍五入”法,还有“同商比较法”,

了解“折半定商法”,不足除数商九、八。(包括:同头、高位少1)

七、混合运算

拿到式题认真看,先算乘除后加碱。

遇到括号要先算,运用规律要改变。

一些数据要记牢,技能技巧掌握好。

八、加、减法速算

加减法速算你莫愁,拿到算式看清楚,

接近整百凑整数,如下处理无谬误。

加法不足减补数,超余零头加在后。

减法不足加补数,超余零头减在后。

九、多位数读法

读书方法很容易,首先四位一分级。

要从最高位读起,几千几百几十几。

级的单位读亿万,末尾有零都不读

(级末尾0不读,整个数末尾0不读)

中间夹零读一个,汉字表达没参和。

注读零的:

1、万级个级首位有零

2、整个万级是零

3、上级末尾下级首位都有0

4、每级中间有0

十、小数加减法

小数加减计算题,以点对准好对齐。

算法如同算整数,算毕把点往下移。

十一、小数乘法

小数乘小数,法则同整数。

定积小数位,因数共同凑。

十二、除数是小数的除法

除数的小数点一划,(去掉小数点)

被除数的小数点搬家,向右搬家搬几位,

除数的小数位数决定它。

十三、质数歌

一位质数2、3、5和7,

两位1、3、7、9前加1,

4后3,7前有9,7后1,

3、4、6后加7、1,

2、5、7、8后添9、3,

二十五个质数要记全。

十四、分数乘除法

分数乘法易学懂,分子分母分别乘。算式意义要搞清,上下能约更轻松。分数除法方法妙,原来除号变乘号。除数子母打颠倒,进行计算离不了。

十五、约分

约分、约分,相乘约净,省时省力。从上往下,从左到右,弄清数据,一数不漏。遇到小数,去点为整,位数不够,用“零”来补。

十六、互质数的判断

分数比化简,互质数两端。观察记五点:1和所有数;相邻两个数;两质必互质。大数是质数,两数定互质。小数是质数,大数不倍数。(是小数的)

十七、文字题

叙述形式有三种,读法意义和名称。解题方法要记清,缩句化简一步算。标点词语把句断,分层布列莫迟延。列式方法有两种,可用算式和方程。

十八、比较关系应用题

(一)相差关系

1、多多少,少多少,都是大减小。

2、已知条件说比多,比前用加比后减。

3、已知条件说比少,比前用减比后加。

(二)倍数关系

1、倍在问题里用除。

2、倍在已知条件里,求是前用乘,求是后用除。

(三)求比几倍多(少)几的数

根据倍数分乘数,根据多少分加减。

算除先加减,算乘后加减。

十九、找单位“1”

单位“1“藏得巧,根据分率把你找。

“其中“的前站得好,”是、占、比“后坐得妙;

“问答式“能找到,补充说明要搞好。

百分数常遇到,不带“率“字有礼貌。

找出一对好朋友,然后确定乘除号。

找单位“1“的说明:

抓住含有不带单位名称的分数的“关键句“、“关键词”,进行剖析,这样就解决了不少学生对于分数应用题苦于不知“从何下手”进行分析数量关系。因此,使学生学会迅速找“关键句”、“关键词语”进行剖析数量关系,不仅能有利于掌握解答分数应用题的一般规律,而且也能培养学生的能力,发展学生的智力。先“找”后“析”是六年级学生普遍的学习规律,切记引导学生认真有序地进行分析。

分数应用题1、找 2、明 3、定 4、对应的解题思路。

二十、正反比例应用题

正比例,分三段,不变数量在中间,

前后归一分开列,然后等号来连接。

反比例分三段,不变数量在前面,

“如果”分开归总列,再用等号来连接。

阅读全文

与小学数学中概念课怎么读相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1692
西安瑞禧生物科技有限公司怎么样 浏览:949
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1642
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050