导航:首页 > 数字科学 > 高一数学函数怎么求值域

高一数学函数怎么求值域

发布时间:2023-05-02 10:23:47

‘壹’ 高一数学函数值域的求法

1.观察法
用于简单的解析式。
y=1-√x≤1,值域(-∞,
1]
y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).
2.配方法
多用于二次(型)函数。
y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1,
+∞)
y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)
3.
换元法
多用于复合型函数。
通过游嫌换元,使高次函数低次化,分式函数整式枯春化,无理函数有理化,超越函数代数以方便求值域。
特别注意中间变量(新量)的变化范围。
y=-x+2√(
x-1)+2
令t=√(x-1),
则t≤0,
x=t^2+1.
y=-t^2+2t+1=-(t-1)^2+2≤1,值域(-∞,
1].
4.
不等式法
用不等式的基本性质,也是求值域的常用方法。
y=(e^x+1)/(e^x-1),
(0
1/(e-1),
y=1+2/(e^x-1)>1+2/(e-1).值域(1+2/(e-1),+∞).
5.
最值法
如果函数f(x)存在最大值M和最小值m.那么值域为[m,M].
因此,求值域的方法与求最值的方法是相通的.
6.
反函数法
有的又叫反解法.
函数和它的反函数的定义域与值域互换.
如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后没磨耐者而得出前者.
7.
单调性法
若f(x)在定义域[a,
b]上是增函数,则值域为[f(a),
f(b)].减函数则值域为
[f(b),
f(a)].

‘贰’ 高一数学必修一求值域方法

你问的问题太宽泛了……碰到我这样懒的人不会想回答太多的……
高一求值域大致有以下几种。其中每一种都要注意一下定义域的问题(就是注意一下可能x∈R时的值域一部分可能要省去)。另外下面应该基本上都要用到函数图象求值域的(其实不用图象,明白其原理也行,但是高一可能很多原理老师不讲的。那就要找到其函数图亩察带象的规律,自己总结一下了)
1、单调区间求值域。对于单调递增或递减的区域,最大值和最小值分别在函数图像的两端上。这个很好求。先证明函数在某一段内是单调函数,然后求两个端点的值。
2、分离常数。对于y=两一元没配一次代数式相除的情况,用此方法。就是把分子的代数式看做分母的代数式的几倍再加上一个常迅芦数。比如:(2x+3)/(x+1),可以把分子看做2(x+1)+1,这样原来的式子可以变成一个常数加上一个平移后的反比例函数了。具体的网络分离常数法。
3、二次函数值域。直接画图,略去不说。
4、对勾函数,略去不说。
5、判别式法,直接网络文库
6、复合函数的值域。先求出内层函数的值域,作为外层函数的定义域,然后按一般求值域的方法求解。略去不说。
我大概只记得这么多了。上面我只是很马马虎虎的讲了一下

‘叁’ 高一求值域的方法有哪些

一函数求值域的方法及例题
高一的。例题不要太深奥

最佳答案
函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦答卖、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

1.导数法
利用导数求出其单调性和极值点的极值,最常规,最不易高错,但往往计算很烦杂
2.分离常数
如 x^2/(x^2+1)将其分离成 1-1/(x^2+1)再判断值域
3.分子分母同除以某个变量
如x/(x^2+1)同时除以x得 1/(x+1/X)分母的值域很好求,再带进整个函数即可
4.换元法
可以说是3的拓展
如(x+1)/(x^2+1)一类分子分母同时除以x仍无法判断的。
令t=x+1,再把x^2表示成(t-1)^2,再分子分母同时除以t就成了3中的情形
5.基本换元法
型如1/(x+1)+1/(x+1)^2等,直接令t=1/(x+1),求出t的定义域,可以很快将函数换成型如 t^2+t的形式,从而可求值域。当然,要注嫌游意t的定义域
6.倒数法
和2基本相同。如x/(x^2+1)先求其倒数x+1/x,再倒回去清者逗,2,6基本类似。
以上是几条比较基本和常用的方法,当然要注意他们的综合应用

‘肆’ 高一数学函数求值域的方法

函数值域求法介绍
在函数的三要素中,定义域和值域起决定作用,而值域是码派野由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。

1、直接观察法
对于一些比较简单的函数,其值域可通过观察得到。
例1 求函数y = 的值域
解: x ≠0 , ≠0
显然函数的值域是:( -∞,0 )∪(0 ,+∞)。
例2 求函数y = 3 - 的值域。
解: ≥0 - ≤0 3- ≤3
故函数的值域是:[ -∞,3 ]
2 、配方法
配方法是求二次函数值域最基本的方法之一。
例3 、求函数y= -2x+5,x [-1,2]的值域。
解:将函数配方得:y=(x-1) +4, x [-1,2], 由二次函数的性质可知:
当x = 1时,y = 4
当x = - 1,时 = 8
故函数的值域是:[ 4 ,8 ]
3 、判别式法
例4 求函数y = 的值域。
解:原函数化为关x的一元二次方程(y-1 ) +(y - 1 )x= 0
(1)当y≠1时, x R ,△ = (-1) -4(y-1)(y-1) ≥0
解得: ≤y≤
(2)当y=1,时,x = 0,而1 [ , ]
故函数的值域为[ , ]
例5 求函数y=x+ 的值域。
解:两边平方整理得:2 -2(y+1)x+y =0 (1)
x R, △=4(y+1) -8y≥0
解得:1- ≤y≤1+
但此时的函数的定义域由x(2-x)≥0,得:0≤x≤2。
由△≥0,仅保证关于x的方程:2 -2(y+1)x+y =0在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由△≥0求出的范围可能比y的实际范围大,故不能确定此函数的值域为[ , ]。可以采取如下方法进一步确定原函数的值域。
0≤x≤2, y=x+ ≥0,
=0,y=1+ 代入方程(1),解得: = [0,2],即当 = 时,原函数的值域为:[0,1+ ]。
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4、反函数法
直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例6 求羡此函数y= 值域。
解:由原函数式可得:迟喊x =
则其反函数为:y =
其定义域为:x ≠
故所求函数的值域为:(- ∞, )
5 、函数有界性法
直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例7 求函数y = 的值域。
解:由原函数式可得: =
>0, >0
解得:- 1<y<1。
故所求函数的值域为( - 1 , 1 ) .
例8 求函数y = 的值域。
解:由原函数式可得:ysinx-cosx=3y
可化为: sinx(x+β)=3y
即 sinx(x+β)=
∵x∈R,∴sinx(x+β)∈[-1,1]。即-1≤ ≤1
解得:- ≤y≤ 故函数的值域为[- , ]。
6 、函数单调性法
例9 求函数y = (2≤x≤10)的值域
解:令y = , = ,则 y , 在[ 2, 10 ]上都是增函数。
所以y= y + 在[ 2 ,10 ]上是增函数。
当x = 2 时,y = + = ,
当x = 10 时, = + =33。
故所求函数的值域为:[ ,33]。
例10 求函数y= - 的值域。
解:原函数可化为: y=
令y = , = ,显然y , 在[1,+∞)上为无上界的增函数,所以y= y + 在[1,+∞)上也为无上界的增函数。 所以当x = 1时,y=y + 有最小值 ,原函数有最大值 = 。
显然y>0,故原函数的值域为( 0 , ]。
7、换元法
通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。
例11 求函数y = x + 的值域。
解:令x-1=t,(t≥0)则x= +1
∵y= +t+1= + ,又t≥0,由二次函数的性质可知
当t=0时,y = 1, 当t →0时,y →+∞。
故函数的值域为[ 1 ,+∞)。
例12 求函数y =x+2+ 的值域
解:因1- ≥0 ,即 ≤1
故可令x+1=cosβ,β∈[ 0 ,∏] 。
∴y=cosβ+1+ =sinβ+cosβ+1 = sin(β+∏/ 4 )+1
∵0≤β≤∏,0 ≤β+∏/4≤5∏/4
∴ - ≤sin(β+∏/4)≤1
∴ 0 ≤ sin(β+∏/4)+1≤1+ 。
故所求函数的值域为[0,1+ ]。
例13 求函数 y= 的值域
解:原函数可变形为:y=-
可令x=tgβ,则有 =sin2β, =cos2β
∴y=- sin2β cos2β= - sin4β
当β= k∏/2-∏/8时, = 。
当β= k∏/2+∏/8时,y = -
而此时tgβ有意义。
故所求函数的值域为[- , ] 。
例14 求函数y=(sinx+1)(cosx+1),x∈[-∏/12∏/2]的值域。
解:y=(sinx+1)(cosx+1)=sinxcosx+sinx+cosx+1
令sinx+cosx=t,则sinxcosx= ( -1)
y = ( -1)+t+1=
由t=sinx+cosx= sin(x+∏/4)且x∈[- ∏/12,∏/2]
可得: ≤t≤
∴当t= 时, = + ,当t= 时,y= +
故所求函数的值域为[ + , + ] 。
例15 求函数y=x+4+ 的值域
解:由5-x≥0 ,可得∣x∣≤
故可令x = cosβ,β∈[0,∏]
y= cosβ+4+ sinβ= sin(β+∏/4)+ 4
∵ 0 ≤β≤∏, ∴ ∏/4≤β+∏/4≤5∏/4
当β=∏/4时, =4+ ,当β=∏时,y =4- 。
故所求函数的值域为:[4- ,4+ ]。
8 数形结合法
其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
例16 求函数y= + 的值域。
解:原函数可化简得:y=∣x-2∣+∣x+8∣
上式可以看成数轴上点P(x )到定点A(2 ),B(- 8 )间的距离之和。
由上图可知:当点P在线段AB上时,
y=∣x-2∣+∣x+8∣=∣AB∣=10
当点P在线段AB的延长线或反向延长线上时,
y=∣x-2∣+∣x+8∣>∣AB∣=10
故所求函数的值域为:[10,+∞)
例17 求函数y= + 的值域
解:原函数可变形为:y= +

上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2 ,-1 )的距离之和,
由图可知当点P为线段与x轴的交点时, y =∣AB∣= = ,
故所求函数的值域为[ ,+∞)。
例18 求函数y= - 的值域
解:将函数变形为:y= -

上式可看成定点A(3,2)到点P(x,0 )的距离与定点B(-2,1)到点P(x,0)的距离之差。即:y=∣AP∣-∣BP∣
由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点P1,则构成△ABP1,根据三角形两边之差小于第三边,
有 ∣∣AP1∣-∣BP1∣∣<∣AB∣= =
即:- <y<
(2)当点P恰好为直线AB与x轴的交点时, 有 ∣∣AP∣-∣BP∣∣= ∣AB∣= 。
综上所述,可知函数的值域为:(- ,- ]。 注:由例17,18可知,求两距离之和时,要将函数式变形,使A,B两点在x 轴的两侧,而求两距离之差时,则要使两点A ,B在x轴的同侧。
如:例17的A,B两点坐标分别为:(3 ,2 ),(- 2 ,- 1 ),在x轴的同侧;
例18的A,B两点坐标分别为:(3 ,2 ),(2 ,- 1 ),在x轴的同侧。
9 、不等式法
利用基本不等式a+b≥2 ,a+b+c≥3 (a,b,c∈ ),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。
例19 求函y=(sinx +1/sinx)+(cosx+1/cosx)的值域
解:原函数变形为:
y=( + )+1/ +1/
= 1+ +
= 3+ +
≥3 + 2
=5
当且仅当tgx=ctgx,即当x=k∏±∏/4时(k∈z),等号成立。
故原函数的值域为:[ 5,+∞)。
例20 求函数y=2sinxsin2x的值域
解:y=2sinxsinxcosx
=4 cosx
=16
=8 (2-2 )
≤8( + +2- )
=8[( + +2- )/3]
=
当且当 =2-2 ,即当 =时,等号成立。
由 ≤ ,可得:- ≤y≤
故原函数的值域为:[- , )。
10、多种方法综合运用
例21 求函数y= 的值域
解:令t= (t≥0),则x+3= +1
(1) 当t>0时,y= = ≤ , 当且仅当t=1,即x=-1时取等号
所以0<y≤ 。
(2) 当t=0时,y=0。综上所述,函数的值域为:[0, ]。
注:先换元,后用不等式法。
例 22 求函数y= 的值域。
解:y= + = +
令x=tg ,则 = , = sin ,
∴y= + sin =- + sin +1
=- +
∴当sin = 时, = 。当sin =-1时,y =-2。
此时tg 都存在,故函数的值域为:〔-2, 〕。
注:此题先用换元法。后用配方法,然后再运用sin 的有界性。
总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

‘伍’ 高一函数的值域的求法

求函数值域的方法有配方法,常数分离法,换元法,逆求法,基本不等式法,求导法,数形结合法和判别式法等,高一函数值域暂时没有导数法和基本不等式法。
1、配方法:二次函数求值域,将函数配方成顶点式的格式,再根据函数的定义域求函数的值域,画一个简单图更能便捷直观的求值域。
2、常数分离:一般是对于分数形式的函数来说的。将分子上的函数尽量配成与分母相同的形式,进行常数分离求得值域。
3、逆求法:对于y=f(x)看成方程,去求为x=f⁻¹(y),此时可得出y的限制范围,就是原式的值域了,这实际是一种方程的方法,利用方程有解的条件得出y的不等式,从而求出函数的定义域。
4、换元法:对于函数的某一部分较复杂或生疏可用换元法,将其转变成我们熟悉的二次函数或其它函数的基本形式求解。
5、单调性:先求出函数的单调性,注意先求定义域,根据单调性再求函数的值域。
6、基本不等式:根据我们学过的基本不等式可将函数转换成可运用基本不等式的形式,以此来求值域。
7、数形结合:可根据函数给出的式子画出函数的图形,在图形上找出对应点求出值域。(对于选择填空题非常实用)
8、求导法:求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值就可得到值域了。
9、判别式法:将函数转变成某某等于零的形式,再用解方程的方法求出要满足的条件,求解即可。

‘陆’ 高一数学,值域怎么求,要过程

值域问题是高中函数的一个精华问题。
有很多问题都是围绕着他展开的。比如说恒成立问题,值域反求定义与问题(即反函数求定义域)……等等。下面就说一下最基本的集中求值域问题的类型。
首先要着重说的是:求值域,必先看定义域。所有函数都是如此。
1.单调性法
利用函数的单调性。当一个函数单调性很容易判断时,可用定义域来求解。
e.g.1
y=x-√(1-2x).求值域。
解:1-2x≥0,得x≤1/2.
观察得,函数在指定区间内为增函数,所以y有最大值,即1/2-√(1-1)=1/2.
所以值域为(-∞,1/2]。
2.判别式法。适用于y是x的2次函数的情况。且x∈r.
y=(x^2-x)/(x^2-x+1).求值域。
解:将原式变形得
y*(x^2-x+1)=x^2-x.整理得
(y-1)x^2+(1-y)x+y=0.
因为y=1时,推出y=0.即x∈φ
所以y≠1.
x∈r,即此式恒有根,所以δ=(1-y)^2-4(y-1)*y≥0,
解得-1/3≤y≤1.
又因为y≠1,所以
y∈[-1/3,1).
注:此法可用的原因:化成x的式子后发现,x∈r对该式都成立,也就是说有这样的x,一定可以为根,要y来配合。此式由无穷个根,即如果你给了合适的y后,在式子中总能找到x解。那么这个y就是为了保证让式子一定有解才会满足x∈r成立,即判别式大于等于0.
3.分离常数法。适用于分母分子有相同的形式的部分,然后用观察法(单调性法)
y=(2-sinx)/(2+sinx).求值域。
变形为y=(-2-sinx+4)/(2+sinx)=-1+4/(2+sinx)
因为sinx∈[-1,1],所以2+sinx∈[1,3].所以4/(2+sinx)∈[4/3,4].
所以y∈[1/3,3]
4.反表示法。把未知项(含x项)用y来表示,要知道未知项的范围。
y=3^x/(3^x+1).求值域。
解:变形得3^x(1-y)=y.讨论
当y=1,即3^x/(3^x+1)=1.不成立(因为此式小于1)所以y≠1,
则有3^x=y/(1-y).这就是说3^x与y/(1-y)是等同的。那么他们的范围也就等同。也就是说y/(1-y)>0.解得y∈(0,1).
5.几何意义法。题干的形式会让我们产生联想。如想到斜率、两点间距离公式等。
①。y=√(x^2+1)+√[(2-x)^2+4].求值域。
先看定义域,全体实数。那么不用管了。
变形得y=√[(x-0)^2+(0-1)^2]+√[(x-2)^2+(0-2)^2].
y的几何意义是(x,0)点到点(0,1)的距离与(x.0)点到点(2,2)的距离的和。画出图像,观察知,当(x,0)点在直线y-2=3/2(x-2)上时,有最小值。
解直线与x轴交点,得x=2/3.对应的原函数值y=√(4+9)=√13.(勾股定理)
②。求y=sinx/(2-x)的值域。
解:变形得y=-(0-sinx)/(2-cosx).y的几何意义是(2,0)到(cosx,sinx)的斜率的相反数。画图,观察计算得k的范围是[-√3/3,√3/3].
所以y的范围是-k,为[-√3/3,√3/3].
如果你是新生的话,可能有些东西你还没接触到,理解的会差一些。没关系,不出几个月,你就都能学到了。
除了上面我介绍的几种方法外,还有什么换元法,上下同除法,平方去根号法,导数法等等。但最常用的还是上面那几个。

‘柒’ 高一数学函数值域怎么求

求函数值域方法•常数分离法•不等式法•配方法•逆求法•换元法•判别式法
一、 配方法
通过配方结合函数图像求函数的值域,一般地,对于二次函数 求值域问题可运用配方法.

二、 反函数法
一般地,形如 ,可利用原函数与反函数的定义域和值域之间的互逆关系.
三、 分离常数法
一般地,对于分式函数来说,可以分离一个常数去求函数的值
四、 判别式法
一般地.形如 ,转化为关于y的一元二次方程,利用方程有实数解, 来求y.
五、 换元法
一般地,形如 ,通过换元 (注意此时t的范围)
六、 分类讨论法
通过分类讨论函数定义域x的符号去求值域.

‘捌’ 高一数学,求各种值域的方法

一、配方法
通过配方结合函数图像求函数的值域,一般地,对于二次函数 求值域问题可运用配方法.
例1、 求 的值域
解:
于是 的值域为 .
二、反函数法
一般地,形如 ,可利用原函数与反函数的定义域和值域之间的互逆关系.
例2、 求函数 的值域.
解:由 得 ,因为 ,所以 .
于是此函数的值域为
三、分离常数法
一般地,对于分式函数来说,可以分离一个常数去求函数的值域.
例3、 求 的值域
解:

即 ,所以
即函数 的值域为 .
注意:例2也可以利用分离常数法去求值域,有兴趣的读者可以试一试.
四.判别式法
一般地.形如 ,转化为关于y的一元二次方程,利用方程有实数解, 来求y.
例4、 求 的值域.
解:由 去分母得

当y=2时,此方程无实根.
当 ,此方程为一元二次方程,

所以 ,又因为 ,于是
故函数 的值域为
注意:下面2点不能直接用判别式法.
1、定义域去掉无限个点. 2、分子分母中含有公因式.
五、换元法
一般地,形如 ,通过换元 (注意此时t的范围)
例5求 的值域
解:令 则
所以 =
当t=0时,y有最小值3.
于是 的值域为 .
六、分类讨论法
通过分类讨论函数定义域x的符号去求值域.
例6求 的值域
解;

因为 ,所以 ,即

而 即
综上: 的值域为 .

‘玖’ 高一函数 值域怎么求 要详细点的 不然不懂


函数值域的几种常见方法
1.直接法:利用常见函数的值域来求
一次函数y=ax+b(a
0)的定义域为R,值域为R;
反比例函数
的定义域为{x|x
0},值域为{y|y
0};
二次函数
的定义域为R,
当a>0时,值域为{
};当a<0时,值域为{
}.
例1.求下列函数的值域

y=3x+2(-1
x
1)



解:①∵-1
x
1,∴-3
3x
3,
∴-1
3x+2
5,即-1
y
5,∴值域是[-1,5]
②∵

即函数
的值域是
{
y|
y
2}

④当x>0,∴
=

当x<0时,
=-
∴值域是
[2,+
).(此法也称为配方法)
函数
的图像为:
2.二次函数比区间上的值域(最值):
例2
求下列函数的最大值、最小值与值域:


解:∵
,∴顶点为(2,-3),顶点横坐标为2.
①∵抛物线的开口向上,函数的定义域R,
∴x=2时,ymin=-3
,无最大值;函数的值域是{y|y
-3
}.
②∵顶点横郑孝升坐标2
[3,4],
当x=3时,y=
-2;慎镇x=4时,y=1;
∴在[3,4]上,
=-2,
=1;值域为[-2,1].
③∵顶点横坐标2
[0,1],当x=0时,y=1;x=1时,y=-2,
∴在[0,1]上,
=-2,
=1;值域为[-2,1].
④∵顶点横坐标2
[0,5],当x=0时,y=1;x=2时,y=-3,
x=5时,y=6,
∴在[0,1]上,
=-3,
=6;值域为[-3,6].
注:对于二次函数
,
⑴若定义域为R时,
①当a>0时,则当
时,其最小值

②当a<0时,则当
时,其最大值
.
⑵若定义域为x
[a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].
①若
[a,b],则
是函数的最小值(a>0)时或最大值(a<0)时,再比较
的大小决定函数的最大(小)值.
②若
[a,b],则[a,b]是在
的单调区间内,只需比较
的大小即可决定函数的最大(小)值.
注:①若给定区间不是闭区间,则可能得不到最大(小)值;
②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.
3.判别式法(△法):
判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论
例3.求函数
的值域
方法一:去分母得
(y-1)
+(y+5)x-6y-6=0


y11时
∵x?R
∴△=(y+5)
+4(y-1)×6(y+1)
0
由此得
(5y+1)
0
检验

(代入①求根)
∵2
?
定义域
{
x|
x12且
x13}

再检验
y=1
代入①求得
x=2
∴y11
综上所述,函数
的值域为
{
y|
y11且
y1
}
方法二:把已知函数化为函数
(x12)

x=2时

说明:此法是利用方程思想来处理函数问题,一般称判别式法.
判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.
4.换元法喊老
例4.求函数
的值域
解:设

t
0
x=1-
代入得
5.分段函数
例5.求函数y=|x+1|+|x-2|的值域.
解法1:将函数化为分段函数形式:
,画出它的图象(下图),由图象可知,函数的值域是{y|y
3}.
解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+
].
如图
两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.
说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法.

‘拾’ 高一数学函数值域求法

函数值域(最值)求法小结

一、配方法
适用类型:二次函数及能通过换元法等转化为二次函数的题型.
【例1】 求函数 的值域.
解:为便于计算不妨: 配方得: ,
利用二次函数的相关知识得 ,从而得出: .
【例2】已知咐核函数y=(ex-a)2+(e-x-a)2(a∈R,a≠0),求函数y的最小值.
解析:y=(ex-a)2+(e-x-a)2=(ex+e-x)2-2a(ex+e-x)+2a2-2.
令t=ex+e-x,f(t)=t2-2at+2a2-2.
∵t≥2,∴f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定义域为[2,+∞).
∵抛物线y=f(t)的对称轴为t=a,
∴当a≤2且a≠0时,ymin=f(2)=2(a-1)2;
当a>2时,ymin=f(a)=a2-2.
练习 ○1 求y = sin2x - 6sinx + 2值域.
○2 当1≤x≤1000时,求 y=(lgx)2-2lgx+3值域.

二、换元法
【例3】 求函数 的值域.
适用类型:无理函数、三角函数(用三角代换).
解析:由于题中含有 不便于计算,但如果令: 注意 从而得: 变形得 即:
【例4】 设a,b∈R,a2+2b2=6,则a+b的最键滑小值是______.
解:∵a,b∈R,a2+2b2=6,
∴令a=6cosα,2b=6sinα,α∈R.
∴a+b=6cosα+3sinα=3sin(α+φ).
∴a+b的最小值是-3;故填-3.
练习 ○3 已知 是圆 上的点,试求 的值域.

三、反函数法(变量分类法)
【例5】求函数 的值域.
解:原式中x∈R,将原式化为 由○1解出x,得 ;(也可由 直接得到 )
因此函数值域是(-1,1)

四、不等式稿简腊法
利用不等式法求解函数最值,主要是指运用均值不等式及其变形公式来解决函数最值问题的一种方法.常常使用的基本不等式有以下几种:
a2+b2≥2ab(a,b为实数);a+b2≥ab(a≥0,b≥0);ab≤a+b22≤a2+b22(a,b为实数).

【例6】设x,y,z为正实数,x-2y+3z=0,则 的最小值为________.
解析:因为x-2y+3z=0,所以y=x+3z2,因此y2xz=x2+9z2+6xz4xz.
又x,z为正实数,所以由基本不等式,得y2xz≥6xz+6xz4xz=3,当且仅当x=3z时取“=”.
故y2xz的最小值为3

五、数形结合法
【例7】适用类型:函数本身可和其几何意义相联系的函数类型.

六、判别式法
把函数转化为x的二次方程F(x,y)=0,通过方程有实根,判别式Δ≥0,从而求得函数的最值.判别式法多用于求形如y=ax2+bx+cdx2+ex+f(a,d不同时为0)的分式函数的最值.
【例9】求函数y=x2-3x+4x2+3x+4的最大值和最小值.
解析:∵x2+3x+4=0的判别式Δ1=32-4×1×4=-7<0,
∴x2+3x+4>0对一切x∈R均成立.∴函数的定义域为R.
∴函数表达式可化为(y-1)x2+(3y+3)x+4y-4=0.
当y=1时,x=0;
当y≠1时,由x∈R,上面的一元二次方程必须有实根,
∴Δ=(3y+3)2-4(y-1)(4y-4)≥0,
解得17≤y≤7(y≠1).综上得ymax=7,ymin=17.

七、函数单调性法
【例10】设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为 12,则a=________.
解析:∵a>1,∴函数f(x)=logax在区间[a,2a]上是增函数,
∴函数在区间[a,2a]上的最大值与最小值分别为loga2a,logaa=1.
又∵它们的差为12,∴loga2=12,a=4.
八、导数法
【例11】函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别是________.
解析:因为f′(x)=3x2-3,所以令f′(x)=0,得x=-1(舍正).
又f(-3)=-17,f(-1)=3,f(0)=1,比较得,f(x)的最大值为3,最小值为-17.

阅读全文

与高一数学函数怎么求值域相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1259
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1349
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:826
武大的分析化学怎么样 浏览:1212
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016