Ⅰ 高二下学期数学学什么
高二下学期数学学立体几何、二项式定理、概率初步等有关内容。
具体内容包括《集合与函数》、《三角函数》、《不等式》、《数列》、《复数》、《排列组合、二项式定理》、《立体几何》、《平面解析几何》等部分。
必修课程是整个高中数学课程的基础,包括5个模块,共10学分,是所有学生都要学习的内容。
相关信息介绍:
高中数学学习是中学阶段承前启后的关键时期,不少学生升入高中后,能否适应高中数学的学习,如何才能学好高中数学,这对于高中生来说是一个急需解决的问题。
数学运算是学好数学的基本功,初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程,初中运算能力不过关,会直接影响高中数学的学习。
Ⅱ 我是广东省佛山市的,用的数学书是人教版,我想问高二数学理科学的是选修几.
高二上学期学的是必修五和选修2-1,下学期学的是选修2-2和2-3.
Ⅲ 高二数学学什么
必修5:解三角形、数列、不等式。选修课程:选修1-1:常用逻辑用语、圆锥曲线局陪与方程、导数及其应用;选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。选修4-1:几何证明选讲;选修4-4:坐标系与参数方程; 选修4-5:不等式选讲。
Ⅳ 高二数学都学什么
高二数学应该学什么了
要学习数列;几何(包括直线、圆、曲线、立体几何)一般高考在这部分要考大题,所以还是很重要的,好好学,在理解的基础上记住一些定理;排列组合;极限;统计等。以上这些都是比较重要的部分,希望你好好学,加油!
高二数学都有什么内容
一、直线与圆:
1、直线的倾斜角的范围是
在平面直角座标系中,对于一条与轴相交的直线,如果把轴绕着交点按到和时所转的记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0斜率已
知直线的倾斜角为α,且α≠90°,则斜率k=tanα.
,,①‖,; ②.
直线与直线的位置关系:
(1)平行 A1/A2=B1/B2 注意检验 (2)垂直 A1A2+B1B2=0
5、点到直线的距离公式;
两条平行线与的距离是
6、圆的标准方程:.⑵圆的一般方程:
注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长
二、圆锥曲线方程:
1、椭圆(a>b>0)注意还有一个;②定义: |PF1|+|PF2|=2a>2c; ③ e=
④长轴长为2a,短轴长为2b,焦距为2c; a2=b2+c2 ;
2、双曲线:①方程(a,b>0) 注意还有一个;②定义: ||PF1|-|PF2||=2a<2c;
③e=;④实轴长为2a,虚轴长为2b,焦距为2c; 渐进线或 c2=a2+b2
3、抛物线 :①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F(,0),准线x=-;③焦半径; 焦点弦=x1+x2+p;
4、直线被圆锥曲线截得的弦长公式:
5、注意解析几何与向量结合问题:1、,. (1);(2).
2、数量积的返裂定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即
3、模的计算:|a|=. 算模可以先算向量的平方
4、向量的运算过程中完全平方公式等照样适用:如
三、直线、平面、简单几何体:
1、学会三视图的分析:
2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴
o'x'、o'y'、使x'o'y'=45°(或135°
)(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不漏埋闭是90度.;③体
积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):直线与平面平行:①平行线面平行;②面面平行线面平行。平面与平面平行:①面平行面平行。线面面。线面求角:(步骤
-------Ⅰ找或作角;Ⅱ求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;⑵直线与平面所成的角:
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t) 表示加速度。
3.常见函数的导数公式: ①;②;③;
⑤;⑥;⑦;⑧ 。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母......
高二数学要学什么啊?
在学习过程中,一定要:多听(听课),多耿(记重要的题型结构,记概念,记公式),多看(看书),多做(做作业),多问(不懂就问),多动手(做实验),多复习,多总结.用记课堂笔记的方法集中上课注意力.
学习液薯要安排一个简单可行的计划, 改善学习方法.同时也要适当参加学校的活动,全面发展.
其他时间中,一定要保证学习时间,保证各科的学习质量,不能偏科.
每天要保证足够的睡眠(8小时),保证学习效率.
安排适当的自由时间用于与家人和朋友的交往及其他活动.
通过不懈的努力,使成绩一步一步的提高和稳固.对考试尽力, 考试时一定要心细,最后冲刺时,一定要平常心.考试结束后要认真总结,以便于以后更好的学习.
眼下:放下包袱,平时:努力学习.考前:认真备战,考试时:不言放弃,考后:平常心.切记!
成功永远来自于不懈的努力,成功永远属于勤奋的人.祝你成功.
高二数学学哪几本书啊...
是这样的
必修1-5高一应该会学完
高二理科要学选修2-1、2-2、2-3,以及选修4-1、4-4
其中选修2系列主要是函数、统计与概率、逻辑、圆锥曲线、空间向量与几何、导数、推理与证明、数系扩充与复数、计数原理
选修4系列主要是专题性质,如座标系与极座标、几何证明选讲等。另外几本4系列就属于选修课范畴了,比如不等式选讲、数列与差分等、
对了河马,你去了国外一年又回来了?那你等于跟下一届高考阿,好麻烦
高二数学主要学习什么内容
必修部分: *** 、函数、基本初等函数、立体几何初步、空间向量与立体几何、算法初步、常用逻辑用语、平面几何初步、圆锥曲线、三角函数、平面向量、解三角形、数列、不等式、推理与证明、导数及其应用、复数、计数原理、概率、随机变量及其分布、数学建模、
选修部分:几何证明与选讲、矩阵与变换、座标系与参数方程、不等式选讲。
必修必考,选修选考。不明白可在线问。
理科高二数学怎么学?
数学其实不难,我高二以来考过满分一般都在120以上,记住一定要做好笔记,笔记在大型考试前绝对会发挥非常大的功效,我亥中从不做笔记中考考满分但是高中来以后认清了笔记的重要性,教科书上说实在的很空,啥都没,我现在非常珍惜我的笔记。上课认真听讲,记好老师补充练习的题目及方法学会归纳和总结,还有一个注重改错,改错本也是非常重要的,许多题目当时听都懂了当时改都晓得了,但过一段时间不见得你还记得,常看看。就我而言,数学其实很有趣,有些题目的巧方法不是挺另人开心及惊叹的么?如果你能保证这两点,不会差到哪去的,加油吧!嘿嘿,我马上高三了,相信到后来会更庆幸笔记做的全了。
高二数学人教版将学什么?
在高二一整学年要学三角函数及图象、平面向量、三角恒等变换、算法、统计、概率附加选修的常用逻辑用语、圆锥曲线与方程、倒数及其应用、框图、推理与证明等
江苏高二数学学什么
目测选修2-1 2-2 2-3 。学微积分,椭圆,概率二项式。还有没学完的必修,貌似要学计数原理吧。记不得了,至于选修部分联系你买高考数学附加题,是一本牛皮纸封面的书,很牛的。我毕业了好多东西扔了。暑假的话,把之前学的复习复习,因为数学200分高一至少学了有120分。
必修没学完的不是特别重要了。如果你一定要学习计划的话,我建议你买小题狂做写写,买全能版,虽然有点多,但题目不错胜在全。专题也分开,也有综合训练,关键的是答案非常详细。
Ⅳ 高二下册数学学什么
高二下册数学学习内容如下:
一、复合函数定义域
若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。
1、当为整式或奇次根式时,R的值域。
2、当为偶次根式时,被开方数不小于0(即≥0)。
3、当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0。
4、当为指数式时,对零指数幂或负整数指数幂,底不为0。
5、当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
6、分段函数的定义域是各段上自变量的取值集合的并集。
7、由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求。
8、对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
9、对数函数的真数必须大于零,底数大于零且不等于1。
二、复合函数常见题型
1、已知f(x)定义域为A,求f的定义域:实质是已知g(x)的范围为A,以此求出x的范围。
2、已知f定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。
3、已知f定义域为C,求f的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。
Ⅵ 高二数学学什么内容
内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。必修课程是整个高中数学课程的基础,包括5个模块,共10学分,是所有学生都要学习的内容。5个模块的内容为:
数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。
数学2:立体几何初步、平面解析几何初步。
数学3:算法初步、统计、概率。
数学4:基本初等函数II(三角函数)、平面向量、三角恒等变换
数学5:解三角形、数列、不等式。
高中数学课程性质
高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。
高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。
以上内容参考网络-高中数学
以上内容参考网络-高中数学课程标准
Ⅶ 高二数学内容有哪些
高二数学内容如下:
1、设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的,单调递增和单调递减的函数统称为单调函数。
2、在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA,nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率。
3、随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率。
4、正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径。
5、常用逻辑语句,包括:命题、充分与必要条件、全称量词与存在量词等。
Ⅷ 新高二数学学哪些内容
高二上学期的数学学哪些内容:
理科:必修2(解析几何初步与立体几何)、选修2-1(圆锥曲线)、选修2-2(分类记数原理)、选修2-3(排列组合)。
文科:必修2(解析几何初步与立体几何)、选修1-1(平面几何)、选修1-2(记数原理)。
可能各地区学校之间有差异,一切还以学生所在学校的教材悉李困为准,以上仅供参考!
高二数学学习要注意事项:
及时了解、掌握常用的数学思想和方法学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握扰迅具体的方法,比如:换元、待定系数、睁念数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
Ⅸ 高二下数学学什么
一般来说,高二下半学期数学学习的内容有不等式,简易逻辑,圆锥曲线,复数,二项式,排列与组合,空间向量与立体几何,变量深究等学习内容。
文理科在选修上有些许的差别,其中选修1是命题问题,选修2系列主要是函数、统计与概率、逻辑、圆锥曲线、空间向量与几何、导数、推理与证明、数系扩充与复数、计数原理;选修4系列主要是专题性质,如坐标系与极坐标、几何证明选讲等。
Ⅹ 高二数学要学哪些知识点
纵观古今中外,许多有成就的伟人所取得的成绩,无不是靠自己的勤奋而得来的。你说不是呀?我们作为一名高中学生,要想取得好成绩,不也要勤奋学习吗?以下是我给大家整理的 高二数学 的知识点,希望大家能够喜欢!
高二数学知识点1
分层抽样
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种 方法
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。
分层的比例问题
(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
高二数学知识点2
1.几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
2.几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);
试验的全部结果所构成的区域长度(面积或体积)
3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。
通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A的概率可以用“事件A包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。
高二数学知识点3
一、不等式的性质
1.两个实数a与b之间的大小关系
2.不等式的性质
(4)(乘法单调性)
3.绝对值不等式的性质
(2)如果a>0,那么
(3)|a?b|=|a|?|b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的证明
1.不等式证明的依据
(2)不等式的性质(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
2.不等式的证明方法
(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.
用比较法证明不等式的步骤是:作差——变形——判断符号.
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.
高二数学要学哪些知识点相关 文章 :
★ 高二数学知识点总结
★ 高二数学重要知识点归纳
★ 高二数学考点知识点总结复习大纲
★ 高二数学知识点归纳总结
★ 高二数学上下学期知识点复习提纲
★ 高二数学必背知识点总结
★ 高二数学知识点全总结
★ 高二数学知识点最新归纳
★ 高二数学知识点整理
★ 高二数学考试必考知识点