㈠ 七年级上册数学几何的大题解题过程
一、余角、补角
1.如果一个角的补角是150°,那么这个角的余角是( )
A.30° B.60° C.90° D.120°
2.下列命题中的真命题是( )
A.锐角大于它的余角 B.锐角大于它的补角
C.钝角大于它的补角 D.锐角与钝角之和等于平角
3.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是( )
A.有三个直角三角形
B.∠1=∠2
C.∠1和∠B都是∠A的余角
D.∠2=∠A
(第3题)
4.一个锐角的补角比它的余角大_________.
5.∠1,∠2互为补角,且∠1>∠2,则∠2的余角是( )
A. (∠1+∠2) B. ∠1 C. (∠1-∠2) D. ∠2
6.一个角的补角比它的余角的2倍大42°,求这个角的度数.
二、对顶角
7.下列说法正确的是( )
A.若两个角是对角角,则这两个角相等; B.若两个角相等,则这两个角是对顶角
C.若两个角不相等,则这两个角不是对顶角; D.以上判断都不对
8.把命题“对顶角相等”写成“如果……那么……”的形式:________.
9.如图,图中对顶角共有( )
A.6对
B.11对
C.12对
D.13对
(第9题)
10.下列各图的∠1和∠2是对顶角的是( )
11.如图,已知直线a,b相交,∠1=∠2,求∠1,∠2,∠3,∠4的度数.
12.如图,已知∠α+∠β=80°,求∠α,∠γ的度数.
三、平行线
13.下列语句正确的是( )
A.有一条而且只有一条直线和已知直线平行;
B.直线AB∥CD,那么直线AB也一定和EF平行;
C.一条直线垂直于两条平行线中的一条,也一定垂直于另一条;
D.两条永不相交的直线叫做平行线
14.如果a∥b,b∥c,那么a∥c的根据是( )
A.等量代换 B.平行公理
C.平行于同一条直线的两条直线平行; D.同位角相等,两直线平行
15.如果两条平行线被第三条直线所截,则一对内错角的平分线互相( )
A.平行 B.平分 C.相交但不垂直 D.垂直
16.如图,DH∥EG∥BC,DC∥EF.则与∠BFE相等的角(不包括∠BFE)的个数是( )
A.2 B.3 C.4 D.5
17.若两平行直线被第三条直线所截,则可构成( )
A.对顶角和同位角各4对
B.内错角2对,同位角2对
C.同位角和同旁内角各2对
D.同旁内角2对,内错角4对
18.如图1,由∠1=∠2,可判定AB∥CD,是根据________,如图2,由∠1=∠2可判定CD∥EF,是根据________;如图3,∵∠1=∠2(已知),∴DE∥______,根据_________.
(1) (2) (3)
19.如图,∵∠1=130°,∠2=50°(已知)
∴∠1+∠2=180°(等式的性质)
∴AB∥CD(_______).
(第19题) (第20题) (第21题)
20.如图,已知L1∥L2∥L3.
①若∠1=70°,则∠2=_____,理由是________;
②若∠1=70°,则∠3=_____,理由是________;
③若∠1=70°,则∠4=_____,理由是________.
21.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.
那么:
(1)∠DAB=_______( );
(2)∠EAC=_______( );
(3)∠BAC=_______( );
(4)∠BAC+∠B+∠C=______( ).
【综合创新训练】
创新应用
22.命题甲:同位角相等,两直线平行.
命题乙:两直线平行,同位角相等
下列说法正确的是( )
A.命题甲、乙都是平行线的性质 B.命题甲、乙都不是平行线的性质
C.只有命题甲是平行线的性质 D.只有命题乙是平行线的性质
23.如图,如果AB∥CD,则①∠1=∠2,②∠3=∠4,
③∠1+∠3=∠2+∠4.上述结论中正确的是( )
A.只有① B.只有② C.只有③ D.①②和③
生活中的数学
24.如图,是一座坚固的两面城墙,为了得出它的角度,我们既无法进到墙内,又不能把墙拆掉.问:用什么办法我们能得出它的度数呢.
追根求源
25.如图,∠1=∠2,EC∥AC,求证:∠3=∠4.
证明:∵EC∥AD
∴∠1=_______(______)
∠2=_______(________)
又∵∠1=∠2(_______)
∴∠3=∠4(________).
26.如图,已知:∠1+∠3=180°,∠2+∠3=180°.
求证:AB∥CD
证明:∵∠1+∠3=180°(_________)
∴∠1与∠3互补(________)
∵∠2+∠3=180°(________)
∴∠2与∠3互补(________)
∴∠1=_______(________)
∴AB∥CD(________).
27.已知:如图,∠FMN=∠C,∠FNM=∠B,求证:∠A=∠F.
探究学习
在同一平面内有2 005条直线a1,a2,…,a2005,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2005的位置关系是怎样的?
答案:
【基础能力训练】
1.B 解析:这个角是30°.
2.C 解析:反例:30°的余角是60°所以A错,30°的补角是150°,
所以B错,30°+120°=150°不是平角,所以D错.
3.B
4.90° 解析:设这个角的度数为x,
180°-x-(90°-x)=180°-x-90°+x=90°
5.C
6.设这个角的度数为x,根据题意得:
180°-x-42°=2(90°-x)
138°-x=180°-2x
x=42°
所以,这个角的度数是42°.
7.A
8.如果两个角是对顶角,那么这两个角相等
9.A 10.D
11.∵∠1+∠2=180°,∠1=2∠2
∴2∠2+∠2=180°
∴∠2=60°,∠1=120°
∠1与∠3,∠2与∠4是对顶角
∴∠1=120°,∠2=60°,∠3=120°,∠4=60°.
12.∵∠α与∠β是对顶角,∠α+∠β=80°
∴∠α=∠β=40°
又∵∠α+∠γ=180°
∴∠γ=180°-∠α=180°-40°=140°
∴∠α=40°,∠γ=140°.
13.C 14.C 15.A 16.D 17.A
18.同位角相等,两直线平行 内错角相等,两直线平行 BC
同位角相等,两直线平行
19.同旁内角互补,两直线平行
20.①110° 两直线平行,同旁内角互补
②70° 两直线平行,同位角相等
③70° 两直线平行,内错角相等
21.(1)44° 两直线平行,内错角相等
(2)57° 两直线平行,内错角相等
(3)79° 三角形内角和等于180°
(4)180° 三角形内角和等于180°
【综合创新训练】
22.D 解析:命题甲是平行线判定定理.
23.D
24.从墙角处向外延伸得到墙角的对顶角,即可.
25.∠3 两直线平行,同位角相等 ∠4 两直线平行,内错角相等
已知 等量代换
26.已知 补角定义 已知 补角定义 ∠2 等量代换 内错角相等,两直线平行
27.∵∠FMN=∠C(已知),
∴DF∥AC(内错角相等,两直线平行)
∴∠A=∠FDB(两直线平行,同位角相等)
又∵∠FNM=∠B(已知)
∠NMF=∠DMB(对顶角相等)
∴∠BDM=∠MFN(三角形内角和等于180°)
∴∠A=∠F(等量代换).
㈡ 七年级上册数学公式是什么
七年级上册数学公式是如下:
一、直棱柱侧闷铅面积S=c*h
二、正棱锥侧面积S=1/2c*h
三、正棱台侧面积S=1/2(c+c)h
四、圆台侧面积S=1/2(c+c)l=pi(R+r)l
五、球的表面积S=4pi*r2
六、圆柱侧面积S=c*h=2pi*h
七、圆锥侧面积S=1/2*c*l=pi*r*l
八、弧长公式l=a*ra是圆心角的弧度数r>0
九唤厅、扇形面积公式s=1/2*l*r
十、锥体体和罩隐积公式V=1/3*S*H
十一、圆锥体体积公式V=1/3*pi*r2h
㈢ 七年级数学公式:几何形体计算公式
【 #初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥一些。。国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学友慎入学考试。奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数行姿对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥一些。国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。下面是 为大家带来的七年级数学公式:几何形体计算公式,欢迎大家阅读。
几何形体周长面积体积计算公式
1、长方形的周长=(长+宽)×2C=(a+b)×2
2、正方形的周长=边长×4C=4a
3、长方形的面积=长×宽S=ab
4、正方形的面积=边长×边长S=a.a=a
5、三角形的面积=底×高÷2S=ah÷2
6、平行四边形的面积=底×高S=ah
7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2
8、直档告绝径=半径×2d=2r半径=直径÷2r=d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr
10、圆的面积=圆周率×半径×半径
㈣ 北师大版七年级数学上册所有概念、公理、公式
平均数问题公式 (一个数+另一个数)÷2
反向行程问题公式 路程÷(大速+小速
同向行程问题公式 路程÷(大速-小速)
行船问题公式 同上
列车过桥问题公式 (车长+桥长)÷车速
工程问题公式 1÷速度和
盈亏问题公式 (盈+亏)÷两次的相差数
利率问题公式 总利润÷成本×100%
中小学数学应用题常用公式
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%