① 什么叫数学建模
qw(最多可选2个答案)
对回答者的感言:
(选填项,40字以内)
学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
② 建立数学模型的方法
建立数学模型的方法如下:
1.类比法。
数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。
类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型。
变分法是处理函数的函数的数学领域,即泛函问题,和处理数的函数的普通微积分相对。这样的泛函可以通过未知函数的积分和它的导数来构造,最终寻求的是极值函数。现实中很多现象可以表达为泛函极小问题,即变分问题。变分问题的求解方法通常有两种:古典变分法和最优控制论。受基础知识的制约,数学建模竞赛大专组的建模方法使用变分法较少。
③ 数学建模的一般步骤
数学建模的一般步骤如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数。
2、 建立数学模型并数学、数值地求解、确定参数。
3、 用实际问题的实测数据等来检验该数学模型。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
④ 什么叫数学建模啊 谁能指导下么
中国数学建模
http://www.shumo.com/main/
全国大学生数学建模主页
http://csiam.e.cn/mcm/
国际数学建模主页
http://csiam.e.cn/mcm/
浙江大学数学建模站
http://csiam.e.cn/mcm/
数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的逗态,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模山余源型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求毁码解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等 基本的数学知识
同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等
一般大学进行数学建模式从大二下学期开始,一般在九月份开始竞赛,一般三天时间,三到四人一组,合作完成!!!
⑤ 数学建模建模分为几种类型,分别用什么法求解
数学建模应当掌握的十类算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算
法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要
处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题
属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、
Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉
及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计
中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是
用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实
现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛
题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好
使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只
认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非
常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常
用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调
用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该
要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab
进行处理)
⑥ 数学建模的方法有哪些
预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);
归类判别:欧氏距离判别、fisher判别等 ;
图论:最短路径求法 ;
最优化:列方程组 用lindo 或 lingo软件解 ;
其他方法:层次分析法 马尔可夫链 主成分析法 等 。
建模常用算法,仅供参考:
蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决 问题的算法,同时间=可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 。
数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数 据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具) 。
线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多 数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用Lindo、Lingo 软件实现) 。
图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算 法,涉及到图论的问题可以用这些方法解决,需要认真准备) 。
动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算 法设计中比较常用的方法,很多场合可以用到竞赛中) 。
最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些 问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助, 但是算法的实现比较困难,需慎重使用) 。
网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很 多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 。
一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替 积分等思想是非常重要的) 。
数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分 析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编 写库函数进行调用) 。
图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问 题,通常使用Matlab 进行处理)。
⑦ 数学模型有哪些
数学模型(mathematical model)就是用数学的语言、方法去近似地刻画实际,描述现实问题的数学公式、图形或算法。
数学模型可按不同的方式进行分类。
按照模型的应用领域,可分为人口模型、生物模型、生态模型、交通模型、环境模型、作战模型、社会模型、经济模型、医学模型、机械模型等。
按照建立模型的数学方法,可分为微分方程模型、几何模型、网络模型、运筹模型、随机模型等。
按照建模目的,可分为描述模型、分析模型、预测模型、决策模型、控制模型等。
按照对模型结构的了解程度,可分为白箱模型、灰箱模型、黑箱模型。白箱是指对所涉及问题的机理很清楚,黑箱是完全不了解问题的内部机理,灰箱则介于两者之间。
根据模型的表现形态还可分为:静态模型和动态模型、解析模型和数值模型、离散模型和连续模型、确定性模型和随机性模型。
数学模型和数学建模介绍
数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些规律建立起变量、参数之间的关系。求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题。数学建模最重要的特点在于它是一个接受实践检验、多次修改、逐渐完善的过程。
数学建模没有固定的格式和标准,也没有明确的方法,通常由明确问题、合理假设、搭建模型、求解模型、分析检验等五个步骤组成。
一个理想的数学模型,应尽可能满足以下两个条件:
模型的可靠性:在误差允许范围内,能正确反映客观实际;
模型的可解性:模型能够通过数学计算,得到可行解。
一个实际问题往往很复杂的,影响因素也有很多,要解决实际问题,就要将实际问题抽象简化、合理假设,确定变量和参数,建立合适的数学模型,并求解。模型的可靠性和可解性通常互相矛盾,一般总是在模型可解性的前提下力争较满意的可靠性。