导航:首页 > 数字科学 > 六年级下册数学有什么详细内容

六年级下册数学有什么详细内容

发布时间:2023-05-16 11:08:42

1. 六年级下册数学书内容有哪些

六年级下册数学书内容有:负数、百分数(二)、圆柱与圆锥、比例、数学广角——鸽巢问题。除此之外,和以往的人教版教材一样,本册教材编排了整理与复习。

对小学阶段涉及到的数学概念、原理、性质、应用以及相关的数学思想、方法进行整理和复习。这一部分内容既是对小学阶段数学学习的总结,也是为学生升入初中奠定知识与方法的基础。

数学书特点

从总体框架上看,与实验教材相比,修订后的教材主要有两大变化:第一,把实验教材六年级上册“百分数”的内容分成两段,其中百分数的特殊应用(如折扣、成数、税率、利率等)移至六年级下册。第二,由于统计内容的整体调整,实验教材六年级下册的统计内容不再单独编写。

除此之外,还有一些结构性的微调。例如,把实验教材六年级上册的实践与综合应用“合理存款”改编为“生活与百分数”,移至本册。

同时,把实验教材六年级下册的“节约用水”移至六年级上册。再如,为了突出对数学思想与方法的整理与复习,教材在“整理与复习”中把“数学思考”从“数与代数”中分离出来,单独设立小节。

在“综合与实践”的整理和复习中,保留了实验教材的“有趣的平衡”“邮票中的数学问题”,删去了“设计运动场”,新增了“绿色出行”和“北京五日游”。

2. 六年级数学知识点下册

数学是考试的重点考察科目,数学知识的积累和解题 方法 的掌握,需要科学有效的 复习方法 ,同时需要持之以恒的坚持。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。

六年级数学下册知识点:圆柱和圆锥

1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4.圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5.圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6.圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。

7.圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

8.圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

9.圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10.从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)

11.把圆锥的侧面展开得到一个扇形。

12.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。

13.常见的圆柱圆锥解决问题:

①压路机压过路面面积(求侧面积);

②压路机压过路面长度(求底面周长);

③水桶铁皮(求侧面积和一个底面积);

④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

六年级数学知识点:负数

1.在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3.能借助数轴初步学会比较正数、0和负数之间的大小。

4.像-16、-500、-3/8、-0.4…这样的数叫做负数。

-3/8读作负八分之三。

16,200,3/8,6.3…这样的数叫做正数。正数前面可以加“+”号,也可以省去“+”号。

+6.3读作正六点三。

0既不是正数,也不是负数。

5.16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃

6.如果2000表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。

7.在数轴上,从左到右的顺序就是数从小到大的顺序。

0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。

负号后面的数越大,这个数就越小。如:-8<-6。

六年级数学重要知识点

分数

1、分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做 分数线 ;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

3、分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

5、分子分母是互质数的分数叫做最简分数。

6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

约分和通分

1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

六年级 数学 学习方法

六年级是备战小升初的最后阶段,学生要归纳和梳理知识点,记清楚概念。另外,通过历年真题的分析能够使得学生整个知识体系得到优化与完善,解题速度和能力得以提升。作为家长,需要做好孩子考前的心理疏导,排查知识和学习状态上的漏洞和不足,有的放矢地及时弥补。

六年级上学期(9~12月):

这一阶段是综合提升的关键阶段。在数学方面,需要对往年择校考题的分析,按考查的知识板块,分专题归纳 总结 ,各个击破。

大致可分为计算部分(从基本的四则运算扩展到综合运算、繁分数运算、常见的简算、定义新运算、循环小数问题等)、图形部分(包括简单的基本平面图形、平面组合图形、简单的立体图形、立体组合图形等)、应用题部分(包括基本应用类型、提高类型等,应用题的种类繁多,在此就不之一举例了)、智巧类问题(这部分主要是涉及奥数知识的一些内容)。

分类的专题,一定要讲练结合,弄清楚知识和方法之间的逻辑关系,切不可死记公式、生套模板。

六年级寒假(1~2月):

这一阶段关键是要提升应考技巧。要按考试题型,逐个类型地掌握答题技巧,在做套题时要让孩子学会合理分配时间,尽量在有限的时间里多得分。

六年级下学期(3~4月):

这一阶段就是要做好综合训练,模拟冲刺、查漏补缺、调整状态。知识和技巧都掌握了,接下来就要进行实战演练。通过模拟题和真题演练,提高解题和得分能力,同时也调整孩子的学习状态,增强信心。另外,还要做好 面试 的准备。

六年级数学知识点下册相关 文章 :

★ 六年级下册数学知识点归纳

★ 六年级数学下册知识点

★ 六年级数学下册的知识点

★ 人教版六年级数学(下册)期末知识要点

★ 人教版六年级数学下册知识要点

★ 六年级下册数学书知识点

★ 小学六年级下册数学复习资料

★ 六年级下册数学知识点北师大版

★ 六年级下册数学书知识点(2)

★ 六年级数学期末复习知识点汇总

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

3. 六年级下册数学书人教版内容有哪些

六年级下册数唯猛姿学书人教版内容有如下:

第一章、位置

第二章、分数乘法

第三章、分数除法

第四章、圆

第五章、百分数

第六章、统计

第七章、数学广角

第八指绝章、知散总复习

第九章、负数

第十章、圆柱与圆锥

第十一章、比例

第十二章、统计

第十三章、数学广角

第十四章、整理与复习

4. 六年级下册数学书里全部的内容

定义定理公式

三角形的面积=底×高÷2。 公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a×a

长方形的面积=长×宽 公式 S= a×b

平行四边形的面积=底×高 公式 S= a×h

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的体积=长×宽×高 公式:V=abh

长方体(或正方体)的体积=底面积×高公式:V=abh

正方体的体积=棱长×棱长×棱长 公式:V=aaa

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。单位换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1吨=1000千克 1千克= 1000克= 1公斤 = 1市斤
(5)1公顷=10000平方米 1亩=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米

数量关系计算公式方面
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
小学数学定义定理公式(二)

一、算术方面

1.加法交换律:两数相加交换加数的位置,和不变。

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。

3.乘法交换律:两数相乘,交换因数的位置,积不变。

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。

6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。

7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8.方程式:含有未知数的等式叫方程式。

9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15.分数除以整数(0除外),等于分数乘以这个整数的倒数。

16.真分数:分子比分母小的分数叫做真分数。

17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18.带分数:把假分数写成整数和真分数的形式,叫做带分数。

19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20.一个数除以分数,等于这个数乘以分数的倒数。

21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数d

5. 6年级下册人教版数学书内容是什么

6年级下册人教版数学书内容是如下:

1、因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找,或用除法找。

2、倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘自然数。

3、自然数按能不能被2整除分为:奇数、偶数。

奇数:不是2的倍数的数叫做奇数。

偶数:是2的倍数的数叫做偶数。

最小的奇数是1,最小的偶数是0。

4、合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。如4、6、8、9、10、12、14、15、16、18、20、22....都是合数。

5、公因数、最大公因数。

几个数公有的因数叫这些数的公因数。其中最大的那个因数就叫它们的最大公因数。用短除法分解质因数(一个合数写成几个质数相乘的形式)例:12=2×2×3。

6. 六年级下册数学书知识点

六年级数学 下册的学习即将结束,同学们对书中的知识点都掌握了多少呢?我为六年级师生整理了六年级数学下册知识点,希望大家有所收获!

六年级下册数学书知识点1

第一单元方向与位置

1、数对的表示 方法 :先表示横的方向,后表示纵的方向,即根据直角坐标系,确定某一点的坐标(x,y).

2、数对的写法:先横向观察,在第几位就在小括号里先写几,再点上逗号;然后再纵向观察,在第几位,就在小括号里面写上几。如小青的位置在第三组,第二个座位,用数对表示为(3,2)。

3、能根据数对说出相应的实际位置。如某个同学在(5,6)这个位置。他的实际位置是,班级中(从左往右数)第五组第六个座位。

确定位置(二)(根据方向和距离确定位置)

【知识点】:

1、认识方向:东、南、西、北、东南、东北、西南、西北。

2、根据方向和距离确定物体位置的方法:(1)以某一点为观测中心,标出方向,上北、下南、左西、右东;将观测点与物体所在的位置连线;用量角器测量角度,最后得出结论在哪个方向上。(2)用直尺测量两点之间的图上距离。

第二单元 正比例反比例

1.比的意义: (1)两个数相除又叫做两个数的比;

(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,

比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,

后项相当于分母,比值相当于分值。

2.比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外),

比值不变,这叫做比的基本性质。

3.求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个

数值可以是整数,也可以是小数或分数。根据比的基本性质可以把比化成

最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

4.按比例分配:在农业生产和日常生活中,常常需要把一个数量按照

一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

5.比例的意义:

表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

6.比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

这叫做比例的基本性质。

7.比和比例的区别

(1)比表示两个量相除的关系,它有两项(即前、后项);

比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,

它是解比例的依据。

8.解比例:

求比例中的未知项,叫做解比例。

9.成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,

如果这两种量中对应的两个数的比值(也就是商)一定,这两种量就

叫做成正比例的量,他们的关系叫

正比例关系。用字母表示=k(一定)。

10.成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,

如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,

他们的关系叫做反比例关系。用字母表示x×y=k(一定)。

11.判断两种量成正比例还是成反比例的方法:

关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,

如果商一定,就成正比例;如果积一定,就成反比例。

12.比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

13.比例尺的分类:(1)数值比例尺和线段比例尺

(2)缩小比例尺和放大比例尺

14.实际距离×比例尺=图上距离、

图上距离÷比例尺=实际距离、图上距离÷实际距离=比例尺

15.应用比例尺画图:

(1)写出图的名称、

(2)确定比例尺;

(3)根据比例尺求出图上距离;

(4)画图(画出单位长度)

(5)标出实际距离,写清地点名称

(6)标出比例尺

16.图形的放大与缩小:形状相同,大小不同。(相似图形)

17.用比例解决问题:

根据问题中的不变量找出两种相关联的量,

并正确判断这两种相关联的量成什么比例关系,

并根据正、反比例关系式列出相应的方程并求解。

六年级下册数学书知识点2

第三单元 圆柱和圆锥

1.圆柱的特征:

(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面,其展开图是一个长方形。

(3)高的特征:圆柱有无数条高。

2.圆柱的高:两个底面之间的距离叫做高。

3.圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,

沿高展开图是正方形;当不沿高展开时展开图是平行四边形。

4.圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S侧=Ch。

5.圆往的表面积:圆柱的表面积=侧面积+2×底面积,即S表=S侧+2 S底。

6.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积,V=Sh。

7.圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成

的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴。

8.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。

9.圆锥的特征:

(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面,展开图是扇形。

(3)高的特征:圆锥只有一条高。

10.圆锥的母线:即圆锥的侧面展开形成的扇形的半径,底面圆周上点到顶点的

距离。圆锥有无数条母线。

11.圆锥的侧面:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长

等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长。

12.圆锥的侧面积=底面的周长(展开图弧长)×母线÷2;

13.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。

一个圆锥的体积等于与它等底等高的圆柱的体积的。根据圆柱体积公式

V=Sh(V=πr2h),得出圆锥体积公式:V=Sh

14.圆柱与圆锥的关系:

(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

(2)体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。

(3)体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。

15.生活中的圆锥:

生活中经常出现的圆锥有:沙堆、漏斗、帽子。

第四单元 统计

1.统计表:把统计数据填写在一定格式的表格内,

用来反映情况、说明问题,这样的表格就统计表。

2.统计种类:

单式统计表:只含有一个项目的统计表。

复式统计表:含有两个或两个以上统计项目的统计表。

3.统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。

4.条形统计图优点:很容易看出各种数量的多少。

注意:画条形统计图时,直条的宽窄必须相同。

复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,

并在制图日期下面注明图例。

5.折线统计图不但可以表示数量的多少,而且能够清楚地表示出数量

增减变化的情况。

注意:折线统计图的横轴表示不同的年份、月份等时间时,

不同时间之间的距离要根据年份或月份的间隔来确定。

按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。

6.扇形统计图

(1)用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。

(2)优点:很清楚地表示出各部分同总数之间的关系。

(3)制扇形统计图的一般步骤:

a)先算出各部分数量占总量的百分之几。

b)再算出表示各部分数量的扇形的圆心角度数。

c)取适当的半径画一个圆,并按照上面算出的圆心角的度数,

在圆里画出各个扇形。

d)在每个扇形中标明所表示的各部分数量名称和所占的百分数,

并用不同颜色或条纹把各个扇形区别开。

↓↓↓ 下页更多"六年级下册数学书知识点" ↓↓↓

7. 六年级下册数学知识点归纳

知识是人生旅途中的资粮。从而,只要我们有了更多的知识,哪怕是最可怕,最艰难的任何事,我们多有了力量去克服,有了知识我们就有了向前走的勇气,勇往直前。下面我给大家分享一些六年级下册数学知识点,希望能够帮助大家,欢迎阅读!

六年级下册数学知识点1

第一单元 负数

1、负数的由来:

为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负

2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)

负数的写法:

数字前面加负号“-”号,不可以省略

例如:-2,-5.33,-45,-2/5

正数:

大于0的数叫正数(不包括0),数轴上0右边的数叫做正数

若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)

正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/5

4、0 既不是正数,也不是负数,它是正、负数的分界限

6、比较两数的大小:

①利用数轴:

负数<0<正数 或 左边<右边

②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大

六年级下册数学知识点2

第二单元 百分数二

(一)、折扣和成数

1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。

几折就是十分之几,也就是百分之几十。

解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题 方法 进行解答。

商品现在打八折:现在的售价是原价的80﹪

商品现在打六折五:现在的售价是原价的65﹪

2、成数:

几成就是十分之几,也就是百分之几十。

解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪

今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪

(二)、税率和利率

1、税率

(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、 教育 、 文化 和国防安全等事业。

(3)应纳税额:缴纳的税款叫做应纳税额。

(4)税率:应纳税额与各种收入的比率叫做税率。

(5)应纳税额的计算方法:

应纳税额=总收入×税率

收入额=应纳税额÷税率

2、利率

(1)存款分为活期、整存整取和零存整取等方法。

(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

(3)本金:存入银行的钱叫做本金。

(4)利息:取款时银行多支付的钱叫做利息。

(5)利率:利息与本金的比值叫做利率。

(6)利息的计算公式:

利息=本金×利率×时间

利率=利息÷时间÷本金×100%

(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

税后利息=本金×利率×时间×(1-利息税率)

购物策略:

估计费用:根据实际的问题,选择合理的估算策略,进行估算。

购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案

学后 反思 :做事情运用策略的好处

六年级下册数学知识点3

第三单元 圆柱和圆锥

一、圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:

1.以长方形的长为底面周长,宽为高;

2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

3、圆柱的特征:

(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征 :圆柱有无数条高

4、圆柱的切割:

①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr?

②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

5、圆柱的侧面展开图:

①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形

②不沿着高展开,展开图形是平行四边形或不规则图形

③无论怎么展开都得不到梯形

6、圆柱的相关计算公式:

底面积 :S底=πr?

底面周长:C底=πd=2πr

侧面积 :S侧=2πrh

表面积 :S表=2S底+S侧=2πr?+2πrh

体积 :V柱=πr?h

考试常见题型:

①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积

烟囱通风管的表面积=侧面积

只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、 游泳 池

侧面积+两个底面积:油桶、米桶、罐桶类

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

3、圆锥的特征:

(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:

①横切:切面是圆

②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,

即S增=2rh

5、圆锥的相关计算公式:

底面积:S底=πr?

底面周长:C底=πd=2πr

体积:V锥=1/3πr?h

考试常见题型:

①已知圆锥的底面积和高,求体积,底面周长

②已知圆锥的底面周长和高,求圆锥的体积,底面积

③已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

三、圆柱和圆锥的关系

1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高 ,体积相差2/3Sh

题型 总结

①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积

分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化

分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比

②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)

③横截面的问题

④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体

⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的 问题,注意不要乘以1/3

六年级下册数学知识点4

第四单元 比例

1、比的意义(1)两个数相除又叫做两个数的比

(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

4、按比例分配:

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

5、比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。

7、比和比例的区别

(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示x/y=k(一定)

9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)

10、判断两种量成正比例还是成反比例的方法:

关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

12、比例尺的分类

(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺

13、图上距离:

图上距离/实际距离=比例尺

实际距离×比例尺=图上距离

图上距离÷比例尺=实际距离

14、应用比例尺画图的步骤:

(1)写出图的名称、

(2)确定比例尺;

(3)根据比例尺求出图上距离;

(4)画图(画出单位长度)

(5)标出实际距离,写清地点名称

(6)标出比例尺

15、图形的放大与缩小:形状相同,大小不同。

16、用比例解决问题:

根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

17、常见的数量关系式:(成正比例或成反比例)

单价×数量=总价

单产量×数量=总产量

速度×时间=路程

工效×工作时间=工作总量

18、

已知图上距离和实际距离可以求比例尺。

已知比例尺和图上距离可以求实际距离。

已知比例尺和实际距离可以求图上距离。

计算时图距和实距单位必须统一。

19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

答:每天播种的公顷数×天数=播种的总公顷数

已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。

六年级下册数学知识点5

第五单元 数学广角-鸽巢问题

1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用

②利用公式进行解题:

物体个数÷鸽巣个数=商……余数

至少个数=商+1

2、摸2个同色球计算方法。

①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。

物体数=颜色数×(至少数-1)+1

②极端思想: 用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

③公式:

两种颜色:2+1=3(个)

三种颜色:3+1=4(个)

四种颜色:4+1=5(个)


六年级下册数学知识点归纳相关 文章 :

★ 六年级数学期末复习知识点汇总

★ 人教版六年级数学(下册)期末知识要点

★ 六年级数学下册必背知识点总结

★ 六年级上册数学知识点整理归纳

★ 六年级数学几何的初步知识知识点总结

★ 小学六年级数学知识点总结

★ 小升初考试必备数学一到六年级的知识点

★ 小升初一至六年级数学知识点整理

★ 小学六年级数学学习方法和技巧大全

★ 小学六年级数学知识点盘点

8. 六年级下册数学知识点总结

六年级下册数学知识点总结

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。下面我整理了一些关于六年级下册数学知识点总结,欢迎大家参考!

第一单元分数乘法

一、分数乘法

(一)分数乘法的意义:

1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?

2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少.

(二)、分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)

4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

(三)、 乘法中比较大小的规律

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a

乘法结合律: ( a × b )×c = a × ( b × c )

乘法分配律: ( a + b )×c = a c + b c

二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)

1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。

2、找单位“1”: 单位“1” 在分率句中分率的前面;

或在“占”、“是”、“比”“相当于”的后面。

3、写数量关系式的技巧:

(1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”是 “ = ”

(2)分率前是“的”字:用单位“1”的量×分率=具体量

例如:甲数是20,甲数的1/3是多少?列式是:20×1/3

4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:

(比少):单位“1”的量×(1-分率)=具体量;

例如:甲数是50,乙数比甲数少1/2,乙数是多少?

列式是:50×(1-1/2)

(比多):单位“1”的量×(1+分率)=具体量

例如:小红有30元钱,小明比小红多3/5,小红有多少钱?

列式是:50×(1+3/5)

3、求一个数的几倍是多少:用 一个数×几倍;

4、求一个数的几分之几是多少: 用一个数×几分之几。

5、求几个几分之几是多少:用几分之几×个数

6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:

(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)

(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量

例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的'关键字“其中”)

第二单元位置与方向(二)

一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)

二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

四、相对位置:东--西;南--北;南偏东--北偏西。

第三单元分数除法

三、倒数

1、倒数的意义: 乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。

2、求倒数的方法:

(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数: 把小数化为分数,再求倒数。

3、 1的倒数是1; 因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)

4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

5、运用,a×2/3=b×1/4求a和b是多少。把a×2/3=b×1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。

1、分数除法的意义:

乘法: 因数 × 因数 = 积

除法: 积 ÷ 一个因数 = 另一个因数

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

例如:1/2÷3/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。

2、分数除法的计算法则:

除以一个不为0的数,等于乘这个数的倒数。

3、分数除法比较大小时的规律:

(1)当除数大于1,商小于被除数;

(2)当除数小于1(不等于0),商大于被除数;

(3)当除数等于1,商等于被除数。

“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

二、分数除法解决问题

1,解法:(1)方程: 根据数量关系式设未知量为X,用方程解答。

解:设未知量为X (一定要解设),再列方程 用 X×分率=具体量

例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。列方程为:X×1/3=20

(2)算术(用除法):单位“1”的量未知用除法:

即已知单位“1”的几分之几是多少,求单位“1”的量。

分率对应量÷对应分率 = 单位“1”的量

例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷1/3

2、看分率前有没有比多或比少的问题;

分率前是“多或少”的关系式:

(比少):具体量÷ (1-分率)= 单位“1”的量;

例如:桃树有50棵,比苹果树少1/6,苹果树有多少棵。

列式是:50÷(1-1/6)

(比多):具体量÷ (1+分率)= 单位“1”的量

例如:一种商品现在是80元,比原价增加了1/7,原价多少?

列式是:80÷(1+1/7)

3、求一个数是另一个数的几分之几是多少: 用一个数除以另一个数,结果写为分数形式。

例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。

列式是:15÷20=15/20=3/4

4、求一个数比另一个数多几分之几的方法:

用两个数的相差量÷单位“1”的量 =分数

即①求一个数比另一个数多几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。

例如:5比3多几分之几?(5-3)÷3=2/3

②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。

例如:3比5少几分之几?(5-3)÷5=2/5

说明:多几分之几不等于少几分之几,因为单位一不同。

5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)

例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?列式:1÷(1/5+1/10+1/3)

第四单元比

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)

15 ∶ 10 = 3/2

前项 比号 后项 比值

3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。

也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

比 前 项 比号“:” 后 项 比值

除 法 被除数 除号“÷” 除 数 商

分 数 分 子 分数线“—” 分 母 分数值

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)

例如:15∶ 10=15÷10=15/10=3/2

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

(2)用求比值的方法。注意: 最后结果要写成比的形式。

例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2

还可以15∶10 = 15÷10 = 3/2最简整数比是3∶2

5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

1+4=5 糖占1/5 用 25×1/5得到糖的数量,水占4/5 用 25×4/5得到水的数量。

2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

糖和水的份数一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4

第五单元圆的认识

一、认识圆形

1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。用字母表示为:d=2r或r=d/2

8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

10、只有1条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。只有2条对称轴的图形是: 长方形;只有3条对称轴的图形是: 等边三角形;只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。

11、画对称轴要用铅笔画,同时要用尺子(三角板)画出虚线,这条虚线两端要超出图形一点。

二、圆的周长

1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

2、圆周率实验:(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长。或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法)。

发现,圆周长与它直径的比值(圆周长除以直径)是一个固定数即3倍多一点,我们把它叫做圆周率用字母π表示。

3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母π(pai) 表示。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。

(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

4、圆的周长公式: 圆的周长等于圆周率乘直径用字母表示C= πd

(1)、已知圆的周长求直径用圆的周长除以圆周率,用字母表示

d = C ÷π或圆的周长等于2乘圆周率乘半径,用字母表示C=2πr

(2)、已知圆的周长求半径用圆的周长除以圆周率的2倍,

用字母表示 r = C ÷ 2π(r = C / 2π)

5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

6、区分周长的一半和半圆的周长:

(1)、周长的一半:等于圆的周长÷2

计算方法:2π r ÷ 2 即C半= π r

(2)半圆的周长:等于圆的周长的一半加直径。 计算方法:半圆的周长=5.14 r (推导过程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)

三、圆的面积

1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。

2、圆面积公式的推导:(1)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。

(2)拼出的图形与圆的周长和半径的关系。

圆的半径 = 长方形的宽

圆的周长的一半 = 长方形的长

3、圆面积的计算方法:因为:长方形面积 = 长 ×宽

所以:圆的面积 = 圆周长的一半 × 圆的半径

即S圆 = C÷2× r=πr × r=πr

圆的面积公式:S圆 =πr → r = S 圆÷ π

4、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。(R=r+环的宽度.)

S环 = πR -πr 或环形的面积公式:S环 = π(R -r )(建议用这个公式)。

5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。

例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大3的平方倍得到9倍。

6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。

例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。

9、常用各π值结果:π = 3.14;2π = 6.28 ;5π=15.7

10、外方内圆(内切圆)公式S=0.86r 推导过程:S=S正-S圆=d -πr =2r×2r-πr =4r -πr =r ×(4-π)=0.86r

11、外圆内方(外切圆)公式S=1.14r 推导过程:S=S圆-S正=πr -dr/2×2=2r×r/2×r=πr -2r =r ×(π-2)=1.14r (把正方形看成两个面积相等的三角形,三角形的底就是直径,高是半径)

12、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。扇形的面积与圆心角大小和半径长短有关。

13、S扇=S圆×n/360;S扇环=S环×n/360

14、扇形也是轴对称图形,有一条对称轴。

15、常见半径与直径的周长和面积的结果。

半径 半径的平方 直径 周长 面积

1 1 2 6.28 3.14

2 4 4 12.56 12.56

3 9 6 18.84 28.26

4 16 8 25.12 50.24

5 25 10 31.4 78.5

6 36 12 37.68 113.04

7 49 14 43.96 153.86

8 64 16 50.24 200.96

9 81 18 56.52 254.34

10 100 20 62.8 314

1.5 2.25 3 9.42 7.065

2.5 6.25 5 15.7 19.625

3.5 12.25 7 21.98 38.465

4.5 20.35 9 28.26 63.585

5.5 30.25 11 34.54 94.985

7.5 56.25 15 47.1 176.625

;

9. 六年级下册数学重点知识点整理

天下没有免费的午餐,一切成功都要靠自己的努力去争取。机会需要把握,也需要创造。应届毕业生考试网为各位小学生同学整理了六年级下册数学重点知识点整理,供大家参考学习。更多内容请关注应届毕业生考试网。

一、负数:

1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3、能借助数轴初步学会比较正数、0和负数之间的大小。

二、圆柱和圆锥

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

三、比例

1、理解比例的意义和基本性质,会解比例。

2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育

四、统计

1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

2、能根据统计图提供的信息,做出正确的判断或简单预测。

五、数学广角

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2、通过“抽屉原理”的灵活应用感受数学的魅力。

六、整理和复习

1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。

2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。

3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。

4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。

5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。

(一)数的读法和写法

1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

(二)数的改写

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000

改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。

3.四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略

345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

4. 大小比较

1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化

1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除

1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。

3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的'公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;

两个合数的公约数只有1时,这两个合数互质。

(五) 约分和通分

约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

小数

1.小数的意义

把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2.小数的分类

纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、5.26 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……

无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏

循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……

混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。

分数

1.分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2.分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数

1.表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

比例 表示两个相等的式子叫做比例。在比例里,两个外项的积等于两个内项。这叫做《比例的基本性质》

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项,叫做解比例

如: x:320=1:10 10x =320×1 x =320÷10 x =32

10. 六年级下册的数学课本有哪些内容,要详细点

人教版小学数学六年级下册:本册教科书由负数、圆柱与圆锥、比例、统计、数学广角、整理与复习等六个单元组成。具体如下:六年下册 一、负数 (负数的认识、比较大小;负数在日常生活及数学中的应用) 二 、圆柱与圆锥 (圆柱和圆锥的认识、圆柱的表面积、圆柱的体积、圆锥的体积) 三、比例 (比例的意义、比例的基本性质、解比例;正反比例、正比例图像;比例尺、图形的放大和缩小;用比例解决问题;) ● 自行车里的数学 四、统计 (统计图的科学选择和使用) 五 、数学广角 (抽屉原理) ●节约用水 六、 整理与复习 1、数与代数 2、空间与图形 3、统计与概率 4、综合应用

阅读全文

与六年级下册数学有什么详细内容相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1259
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1348
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:824
武大的分析化学怎么样 浏览:1212
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016