导航:首页 > 数字科学 > 大学数学怎么开窍

大学数学怎么开窍

发布时间:2023-05-16 17:36:09

A. 大学数学怎么学学好大学数学的8个方法

进入大学,每个人都应该先做个自我反省,在学习过程中将会出现很多与过去不同的一面,尤其是在数学学习上,我整理了数学学习相关内容,希望能帮助到您。

学好大学数学的8个方法

1)大一生大都自我感觉良好,认为自己的学习方法是成功的。自己能考上不错的本科,就说明自己在学习上有一套。自己高中怎样学,大学还怎样学,就一定能成功。不知道改进学习方法的必要性。

2)缺少迎难而上的思想准备。基础知识大滑坡,基本技能大退步,头脑时常出现空白。学习时跟不上教学的进度与要求。

3)对大学课程的学习特点,缺少全面准确的了解。对大学生应该掌握的学习方法,缺少系统的学习和掌握。

提高大学数学学习成绩的关键:

大学生学数学,靠的是一个字:悟!

借助这8个方法,教你更好领悟高数

1

先看笔记后做作业

有的学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。

因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。

2

做题之后加强反思

现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。

要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,构建起一个内容与方法的科学的网络系统。

要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。

3

主动复习和总结

进行章节总结是非常重要的。

怎样做章节总结呢?

①要把课本,笔记,校期末测验试卷,都从头到尾阅读一遍。

②把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。

③在基础知识的疏理中,要罗列出所学的所有定义,定理,法则,公式。

④把重要的,典型的各种问题进行编队。

⑤总结那些尚未归类的问题,作为备注进行补充说明。

4

重视改错,错不重犯

一定要重视改错工作,做到错不再犯。

5

积累资料随时整理

把课堂笔记,练习,试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。

6

精挑慎选课外读物

大学数学考的是学生解决常规题的能力。作为一名大学生,如果还想围着自己的老师转,是不可能的,老师一般一下课就走,所以这种方法会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事倍功半。

7

配合老师主动学习

大学生必须提高自己学习的主动性,随时预防挂科。

8

合理规划步步为营

大学的学习表面上是轻松的,实则是暗藏危机。没有了高中老师的步步紧抓,许多自制力差,又没计划性的学生任由自己堕落。所以,要想能迅速取得进步,就要给自己制定一个较长远的切实可行的学习目标和计划。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的微量调整。

大学数学怎么学?

众所周知,数学是一门富有魅力又极具挑战性的学科。有些时候,花了大量的时间,但还是没有什么结论或是还是理解不了一些过程,而且,往往会有一种挫败感——为什么别人想的到而我想不到。可见,学好数学绝不是一件易事,需要付出大量的努力,需要大量的积累和细心体会。但是,大家也不必太过害怕或是灰心,要相信,只要付出了努力,只要有不断地、耐心地思考,一定能够理解好所学内容,能够解决问题。

对于刚入学的新生,要面对的专业课就是数学专业中基础中的基础:数学分析、高等代数和解析几何,正好对应数学的三大核心领域:分析、代数、几何。

数学分析是指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。在学习这门课程时,既需要感觉和直觉去分析理解问题,又需要严密的证明来说明你的观点。刚接触时,由于和高中的思维方式有很大不同,可能会有无从下手的感觉,但多看例题,反复练习,慢慢就会熟悉理解。

高等代数主要研究线性空间、线性变换和多项式理论等。通过引入向量、矩阵、行列式等工具,在一般的集合上研究问题,并将抽象的线性变换视为成更实际的矩阵进行研究。这是一套严密完整的理论,全部学完后,你将看到它完整的面目。在学习时,要注意将知识融会贯通,形成一个整体,一套体系。

解析几何在大一学的不多也不难,多用线性代数方法研究。

数分和高代是数学专业中的基础,需要高度重视,学到高年级的课程时,会发现有一些内容和数分高代的内容相近或是类似,如果一开始没好好学,后面会越学越辛苦。

学习数学必须要多思考,要多想想一个定理是怎么引入的,为什么需要这些条件,缺了某一个条件会有什么后果,多记一些例子,尤其是反例,再想想看如果不看证明,自己能不能证明出来。多研究例题,看看人家是怎么想的,思考为什么别人能想到,有什么地方可以找到突破口,要积累。多做题,多做好题,注意老师课堂上讲的题目和勾出来的题目。

在大学期间,也会有数学竞赛,主要的有:全国大学生数学建模竞赛(国赛)、美国大学生数学建模竞赛(美赛)、全国大学生数学竞赛(数学竞赛)、丘成桐大学生数学竞赛(丘赛)。对自己的数学实力有自信的,或是想要挑战一下自己的同学可以考虑参加这几个竞赛,检验一下自己。

要学好数学需要多读书,要扩大自己在数学领域的知识面,才会有更加深入的体会和了解。故在此推介一些适合数学专业的同学看的书,希望对大家有所帮助。

数学分析

1. 基础教材

(1)数学分析 陈纪修 复旦大学出版社

(2)数学分析 华东师范大学出版社(没有复旦的版本好,当作基础中的基础,全部掌握文本内容和习题即可)

(3)数学分析教程 常庚哲(较难)

2. 参考书

(1)微积分学教程 菲赫金哥尔茨(非常详细,可作数学分析“词典”用,若要顺序读下来可能比较耗时)

(2)数学分析 卓里奇(观点比较高级,建议高年级时或觉得自己学得很清晰的同学阅读)

(3)数学分析讲义 陈天权 (视角非常高,建议较高年级时阅读)

(4)数学分析原理(Principles of Mathematical Analysis) Rudin (比较全面的经典教材,写得比较简练,可以学完后看)

(5)陶哲轩实分析 陶哲轩 (从最基础写起,可以当作课外读物)

(6)重温微积分 齐民友 (可以学得差不多时作为回顾)

(7)数学分析新讲 张筑生

(8)数学分析全程辅导及习题精解

3. 习题

(1)数学分析习题课讲义(上下册) 谢惠民等 (很好的习题集)

(2)数学分析中的典型问题与方法 裴礼文 (很好的习题集,慢慢做不必着急)

(3)吉米多维奇数学分析习题集(1—6)(题目以计算为主,可以选取里面的计算题作为对自己计算能力的检验,不要刷题,挑取类型题做熟练就行)

高等代数

1. 参考书

(1)高等代数学习指导书(上下册) 丘维声 (非常厚的两本书,也非常详细清晰,可作参考)

(2)高等代数简明教程(上下册) 蓝以中 (比较薄,易携带)

(3)高等代数学 张贤科、许甫华 (相比以上较难,但非常全面,有一些知识在高等代数课上并未涉及,可以到这里阅读)

(4)高等代数解题方法 张贤科、许甫华(上本书的配套习题书)

2. 习题集

(1)高等代数习题集(上下册) 杨子胥(比较全面的一本高等代数习题集,可以作参考)

(2)高等代数习题精解 刘丁酉 中国科学技术大学出版社 (较全面)

(3)我院樊启斌老师整理的高等代数习题集非常好,除了该本练习和课后习题,一般不需要再多做题目。

概率论

(1)概率论 何书元 北京大学出版社(轻便而易懂)

(2)概率论教程 钟开莱(均以实变函数知识为基础的概率论,是真正意义上的数学中的概率论,大三的数基与弘毅同学可看)

(3)概率论教程 缪柏其、 胡太忠 中国科学技术大学出版社

数值分析

(1)数值线性代数 北京大学出版社

(2)数值计算方法 武汉大学出版社

常微分方程

(1)常微分方程教程 丁同仁(国内经典教材)

(2)常微分方程习题集 庄万(习题比较多可以参考一下)

(3)高等数学例题与习题集(四)常微分方程 博亚尔丘克(还不错的一本ODE习题集)

(4)常微分方程 阿诺尔德(观点较高的一个经典着作)

复变函数

(1)复变函数简明教程 谭小江,伍胜健(北大教材,条理清晰,可作初次学习用)

(2) Complex Analysis, Stein (非常简练而全面,可作参考书)

(3)实分析与复分析(Real and Complex Analysis), Rudin (经典的西方教材)

(4)复分析(Complex Analysis), Ahlfors(最经典的西方教材之一)

(5)高等数学例题与习题集(三) 复变函数 博亚尔丘克(非常全面的一本复变函数习题集)

实变函数

(1)Real Analysis, Folland(深入浅出,很详细)

(2)Real Analysis, Stein(比较经典的教材)

(3)实分析与复分析(Real and Complex Analysis), Rudin(经典教材,比较概括而全面)

(4)实变函数论,实变函数学习指南 周民强(非常好的国内教材,里面思考题非常多,可以慢慢阅读思考)

泛函分析

(1)泛函分析,江泽坚(非常简明)

(2)泛函分析讲义(上下册) 张恭庆、林源渠、郭懋正(北大教材,比较全面,习题也不错)

(3)Functional Analysis, Rudin(经典教材)

(4)泛函分析(Functional Analysis), Peter Lax(经典教材)

B. 怎么提高大学数学成绩

身为文科生的我对于数学有着千丝万缕的感触,数学是一直让我头疼的学科。上到了大学所选的专业也是要学习数学,依然摆脱不了被数学支配的恐惧。那怎么办?那只能 “投机取巧”了,适用了很多的数学方法,我依然觉得掌握对的方法是非常有必要也是非常重要的。从班上的数学学霸身上我薅到了学霸的数学学习方法,哈哈哈,用了学霸的方法之后成绩真的有显而易见的提升!so,我想把这个实用的方法分享给大家,希望对想学好数学的小伙伴们有帮助噢~

第一、就是要做错题本!

学生党一定要有错题本!

不要觉得上到大学就什么笔记本错题本都不需要了,其实不然,学习工具用的好关键时刻助你跑。学霸每学期都会整理出很多很多的数学错题,大考前都会翻翻看一看的。这个习惯真的受益终身,对于学数学。错题本里不止有错题,还可以包括老师上课讲的做题方法,自己做题摸索出来的规律,模型等等,考前翻一翻对自己帮助非常大。(可以买分页的活页本,把几个板块分隔开,便于找到你想看的东西)
翻一翻对自己帮助非常大。(可以买分页的活页本,把几个板块分隔开,便于找到你想看的东西)

C. 在大学怎样才能学好数学专业

我是数学专业本科毕业,我大一的时候也曾经和你一样困惑,怎么我高中是数学尖子,大学却成差生。后来不知道怎么突然间开窍了,其实大学数学分成很多科。基本上数学专业和非数学专业学的数学最大不同就是专业学的大多是怎么“证明”,后者主要学怎么计算。
我的建议:1、先把书里的例题看懂,有时要一个晚上的时间才能真正看懂一道例题,不懂的求教,接着把证明过程遮住,自己去证明。然后再跟书里的证明过程比对。最后把课后类似的题目自己做一遍,再找同学老师找答案比对。
因为很多时候你看过例题一眼就觉得懂了,实际上自己做不出来。
2、分析题型,把所学的每个科目都统计一下有多少种研究的题型。一般掌握了题型,你就可以不变应万变。

D. 大学数学太难学了 怎么办啊

怎样才能学好数学?
要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。
究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。
由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。

一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。帮助学生认真分析运算出错的具体原因,是提高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:
①情绪稳定,算理明确,过程合理,速度均匀,结果准确;
②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。

二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。
★什么是理解?
按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。
理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
★什么是记忆?
一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。

三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。
1、如何保证数量?
① 选准一本与教材同步的辅导书或练习册。
② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。
③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④每天保证1小时左右的练习时间。
2、如何保证质量?
①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。
②落实:不仅要落实思维过程,而且要落实解答过程。
③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。

四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
总而言之,只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,我们就一定能早日进入数学学习的自由王国。

很多人在考试时总考不出自己的实际水平,拿不到理想的分数,究其原因,就是心理素质不过硬,考试时过于紧张的缘故,还有就是把考试的分数看得太重,所以才会导致考试失利,你要学会换一种方式来考虑问题,你要学会调整自己的心态,人们常说,考试考得三分是水平,七分是心理,过于地追求往往就会失去,就是这个缘故;不要把分数看得太重,即把考试当成一般的作业,理清自己的思路,认真对付每一道题,你就一定会考出好成绩的;你要学会超越自我,这句话的意思就是,心里不要总想着分数、总想着名次;只要我这次考试的成绩比我上一次考试的成绩有所提高,哪怕是只高一分,那我也是超越了自我;这也就是说,不与别人比成绩,就与自己比,这样你的心态就会平和许多,就会感到没有那么大的压力,学习与考试时就会感到轻松自如的;你试着按照这种方式来调整自己,你就会发现,在不经意中,你的成绩就会提高许多;
这就是我的经验之谈,妈妈教给我的道理,使我顺利地度过了中学阶段,也使我的成绩从高一班上的30多名到高三时就进入了年级的前10名,并且没有感到丝毫的压力,学得很轻松自如,你不妨也试一试,但愿我的经验能使你的压力有所减轻、成绩有所提高,那我也就感到欣慰了;
最祝你学习进步!

E. 怎么学好大学数学

数学是一门非常难的学科,如果不会学习数学,你的成绩就很难提高。大学数学作为必修的一门课程,虽然它与高中数学相比有一定的难度但是这也是大学数学所不能比的。但是如果你想学好数学的话,你必须要好好利用每一次可以提升自己数学能力的机会。下面我们一起来看一下都有哪些好方法吧!


5、适当地参加一些校内活动和校外活动

如果你真的很喜欢数学,那么你可以参加一些校内的活动和校外活动。校内活动包括演讲比赛,讲课比赛等。校外活动则包括学生辩论赛,班级篮球赛等。如果你在大学里获得了一些奖项或者是其他的一些荣誉称号,那么你就可以报名参加校外活动。这些活动都是可以让你在大学里获得提升的。

F. 大学数学大题的最佳解题技巧

大题是大学数学科目的重要组成部分,也是比分占得很重的一部分,考生需要掌握解题技巧,才能正确答题,下面我给大家带来大学数学大题的最佳解题技巧,希望对你有帮助。

大学数学大题的最佳解题技巧

一、三角函数题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率问题

1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

2、搞清是什么概率模型,套用哪个公式;

3、记准均值、方差、标准差公式;

4、求概率时,正难则反(根据p1+p2+...+pn=1);

5、注意计数时利用列举、树图等基本方法;

6、注意放回抽样,不放回抽样;

7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

8、注意条件概率公式;

9、注意平均分组、不完全平均分组问题。

五、圆锥曲线问题

1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

3、战术上整体思路要保7分,争9分,想12分。

六、导数、极值、最值、不等式恒成立(或逆用求参)问题

1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

2、注意最后一问有应用前面结论的意识;

3、注意分论讨论的思想;

4、不等式问题有构造函数的意识;

5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

6、整体思路上保6分,争10分,想14分。

大学数学解题思路

1、函数与方程思想

函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。

2、 数形结合思想

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

3、特殊与一般的思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

4、极限思想解题步骤

极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

大学数学学习方法

1.学习的.心态。

多数中等生的数学成绩是很有希望提升。一方面是目前具备了一定基础,加上努力认真,这种学生态度没有问题,只是缺少方向和适合的方法而已。另一方面,备考时间还算充足,还有时间进行调整和优化。所以平日里多给自己一些积极的心里暗示,坚持不断地实践合适自己的学习方法。

2.备考的方向。

什么是备考方向?所谓备考方向就是考试方向。在平时做题的时候,要弄明白,你面前的题是哪个知识框架下,那种类型的题型,做这样类型的题有什么样的方法,这一类的题型有哪些?等等。

题型和知识点都是有限的,只要我们根据常考的题型,寻找解题思路并合理的训练,那么很容易提升自己的数学成绩。

3.训练的方式。

每个人实际的情况不一样,训练的方式也不不同,考试中取得的好成绩都是考前合理训练的结果。很多学生抱怨时间不足,每天做完作业以后,身心疲惫。面对一堆题目,特别是数学题,可以注重以下几个角度:

(1)弄清楚自己的需要。例如拿到老师布置的作业,无论是试卷还是课本习题,如果带着情绪做,那么效果肯定不好。首先要弄清自己的需要,比如这些题目中哪些题目质量好?哪些是你还没有弄懂的?哪些是以前常出现的?哪些是你肯定会做的等等,你最想解决哪题?

(2)制定目标。如果应付老师来做题无疑导致做题质量不高,那么在做题之前应该制定一定目标,如上面说的那样,你通过哪些题目来训练正确率?通过哪些题目来练习速度?通过哪些题目来完善步骤等等。有了目标,更好的实现目标,在这个过程中,你肯定有很多收获

G. 怎样学好大学数学,可以考试拿高分

要注意高等数学课程的内容与中学数学的区别与联系,尽快适应高等数学课程的新的教学特点。
严格按照任课老师的要求去做。坚持做到,课前预习,课上听讲,课后复习,认真完成作业,课后对所学的知识进行归纳总结,加深对所学内容的理解,就不难学好高等数学这门课。
有些同学就是掉以轻心,一看高等数学一开始的内容和高中所学内容极其相似就认为自己看看就会了,课也不听,作业也不写,结果导致后面的章节听不懂,跟不上,学期末成绩不理想,甚至不及格。
掌握正确的学习方法 ,比如函数的连续与间断,积分的换元法、分步积分法等一时很难掌握,这就需要反复琢磨,反复思考,反复训练。通过正反例子比较,从中体会,才能从不懂到一知半解再到基本以及熟练掌握。
建议可以看看宋浩老师以及徐小湛老师的课。准备考研以及拔高的话听听张宇的课也不错,李林的题可以多写写。
至于蜂考那些所谓不挂科的网课当作预习或者学渣考前冲刺是可以的,平时拔高还是算了。

H. 大学数学学不会怎么办

认真听课是第一步,因为在课堂上有老师为我们整理思路,并且串讲知识点,同时在课堂上,如果我们遇到问题可以及时提问,困惑的地方得到立即解答,所以认真听课是最高效的学习方法。课堂也拥有着十分利于学习利于思考的氛围。

其次就是做好笔记,无论是自己学习还是在课堂上跟着老师学习,做笔记都能帮助我们加深记忆,整理思路,数学是一个十分考验逻辑思维能力的学科,所以理清思路十分重要,把课本内容整理成笔记其实是一个把外在灌输的知识内化成自己的思想的过程。

首先 与高中数学不同的是,高等数学各种各样的定义证明超级多,课堂上老师讲课速度也超级快。两节课,100分钟,基本上都是老师在讲,而你只能在底下听。因为课时少,加上内容又那么多,老师不得不飞快的讲,所以只要你一旦开小差,就基本没有继续听下去的信心和能力了。

加之,课堂上老师基本不会给你时间消化和练习,而课后自己会不会练习也还得另说。本要在知识内容方面上了一个档次,又不能多加练习,高数也就自然而然成了众多大学生的噩梦。

I. 大学数学思维方法有哪些

思维的概括性表现在它对一类事物非本质属性的摒弃和对其共同本质特征的反映。那么关于大学数学思维 方法 有哪些呢?下面就是我给大家带来的大学数学思维方法,希望大家喜欢!

大学数学思维方法

1、对应思想方法

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法

用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

5、类比思想方法

类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法

转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法

分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

8、集合思想方法

集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

9、数形结合思想方法

数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

10、统计思想方法

小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。

11、极限思想方法

事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

12、代换思想方法

它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?

13、可逆思想方法

它是 逻辑思维 中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

14、化归思维方法

把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。

15、变中抓不变的思想方法

在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?

16、数学模型思想方法

所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。

17、整体思想方法

对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。

初中数学学什么?

主要考查具体的“数”与“形”,以及抽象的“函数”

“数”——实数、代数式、代数方程

“形”——角与线、三角形、四边形、多边形、圆

“函数”——正反比例函数、一次函数、二次函数

这三者之间,知识相连,数形互通

环环相扣,无懈可击


大学数学思维方法有哪些相关 文章 :

★ 怎么学好大学数学有哪些学习方法

★ 大学数学怎么学?学好大学数学的8个方法

★ 数学八种思维方法介绍

★ 数学思维训练方法介绍

★ 有效的数学教学方法有哪些

★ 常用的数学教学方法有哪些

★ 大学数学学习独特的方法

★ 大学数学学习方法指导

★ 如何培养数学思维方式

J. 大学数学一窍不通,怎么办

那是因为你对大学数学了解太少,居然这么形容数学。有这么一句话,“在一棵高高的树上,挂了很多人,树下更是挂了不少”,所形容的就是高等数学。
大学数学有很多科目,一般人学的是高等数学(计算方向),也有人学数学分析(理论方向),有人学线性代数,也有人学的是高等代数,还有离散数学,常微分方程,复变函数,实变函数,模糊数学,泛函分析等等。不知道你学的是哪门数学。
推荐你吉米多维奇,全都做会你就成神,做完你就成大神。大学是一个团队游戏,你不能单单靠自己了,多跟别人交流交流,而且要死皮赖脸,别问别人,别人说他也不会你就真信,你要会说闹搏“你就讲讲你理解的部分就好了”。送你一个字“勤”,不建议你死做题,建议你勤做题,勤交流(特别是与教授)液拆祥,勤吃饭。最后一点不是拼凑,不要让细小的事情影响自己一天,大学的食堂御猛你要懂。

阅读全文

与大学数学怎么开窍相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:949
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050