导航:首页 > 数字科学 > 数学小百科怎么写

数学小百科怎么写

发布时间:2023-05-16 17:36:11

‘壹’ 数学小百科

您好!

1.祖冲之和圆周率

祖冲之不但精通天文、历法,他在数学方面的贡献,特别对“圆周率”研究的杰出成就,更是超越前代,在世界数学史上放射着异彩。
我们都知道圆周率就是圆的周长和同一圆的直径的比,这个比值是一个常数,现在通用希腊字母“π”来表示。圆周率是一个永远除不尽的无穷小数,它不能用分数、有限小数或循环小数完全准确地表示出来。由于现代数学的进步,已计算出了小数点后两千多位数字的圆周率。
圆周率的应用很广泛。尤其是在天文、历法方面,凡牵涉到圆的一切问题,都要使用圆周率来推算。我国古代劳动人民在生产实践中求得的最早的圆周率值是“ 3”,这当然很不精密,但一直被沿用到西汉。后来,随着天文、数学等科学的发展,研究圆周率的人越来越多了。西汉末年的刘歆首先抛弃“3”这个不精确的圆周率值,他曾经采用过的圆周率是3.547。东汉的张衡也算出圆周率为**=3.1622。这些数值比起π=3当然有了很大的进步,但是还远远不够精密。到了三国末年,数学家刘徽创造了用割圆术来求圆周率的方法,圆周率的研究才获得了重大的进展。
用割圆术来求圆周率的方法,大致是这样:先作一个圆,再在圆内作一内接正六边形。假设这圆的直径是2,那末半径就等于1。内接正六边形的一边一定等于半径,所以也等于1;它的周长就等于6。如果把内接正六边形的周长6当作圆的周长,用直径2去除,得到周长与直径的比π=6/2=3,这就是古代π=3的数值。但是这个数值是不正确的,我们可以清楚地看出内接正六边形的周长远远小于圆周的周长。
如果我们把内接正六边形的边数加倍,改为内接正十二边形,再用适当方法求出它的周长,那么我们就可以看出,这个周长比内按正六边形的周长更接近圆的周长,这个内接正十二边形的面积也更接近圆面积。从这里就可以得到这样一个结论:圆内所做的内接正多边形的边数越多,它各边相加的总长度(周长)和圆周周长之间的差额就越小。从理论上来讲,如果内接正多边形的边数增加到无限多时,那时正多边形的周界就会同圆周密切重合在一起,从此计算出来的内接无限正多边形的面积,也就和圆面积相等了。不过事实上,我们不可能把内接正多边形的边数增加到无限多,而使这无限正多边形的周界同圆周重合。只能有限度地增加内接正多边形的边数,使它的周界和圆周接近重合。所以用增加圆的内接正多边形边数的办法求圆周率,得数永远稍小于π的真实数值。刘徽就是根据这个道理,从圆内接正六边形开始,逐次加倍地增加边数,一直计算到内接正九十六边形为止,求得了圆周率是3.141O24。把这个数化为分数,就是157/50
刘徽所求得的圆周率,后来被称为“徽率”。他这种计算方法,实际上已具备了近代数学中的极限概念。这是我国古代关于圆周率的研究的一个光辉成就。
祖冲之在推求圆周率方面又获得了超越前人的重大成就。根据《隋书·律历志》的记载,祖冲之把一丈化为一亿忽,以此为直径求圆周率。他计算的结果共得到两个数:一个是盈数(即过剩的近似值),为3.1415927;一个是朒数(即不足的近似值),为3.1415926。圆周率真值正好在盈朒 两数之间。《隋书》只有这样简单的记载,没有具体说明他是用什么方法计算出来的。不过从当时的数学水平来看,除刘徽的割圆术外,还没有更好的方法。祖冲之很可能就是采用了这种方法。因为采用刘徽的方法,把圆的内接正多边形的边数增多到24576边时,便恰好可以得出祖冲之所求得的结果。
盈朒 两数可以列成不等式,如:3.1415926(*)<π(真实的圆周率)<3.1415927(盈),这表明圆周率应在盈朒 两数之间。按照当时计算都用分数的习惯,祖冲之还采用了两个分数值的圆周率。一个是355/119(约等于3.1415927),这一个数比较精密,所以祖冲之称它为“密率”。另一个是了(约等于3.14),这一个数比较粗疏,所以祖冲之称它为“约率”。在欧洲,直到1573年才由德国数学家渥脱求出了355/119这个数值。因此,日本数学家三上义夫曾建议把355/119这个圆周率数值称为“祖率”,来纪念这位中国的大数学家。

2.牛顿和微积分

大多数现代历史学家都相信,牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。此外,莱布尼茨的符号和“微分法”被欧洲大陆全面地采用,在大约1820年以后,英国也采用了该方法。莱布尼茨的笔记本记录了他的思想从初期到成熟的发展过程,而在牛顿已知的记录中只发现了他最终的结果。牛顿声称他一直不愿公布他的微积分学,是因为他怕被人们嘲笑。牛顿与瑞士数学家尼古拉·法蒂奥·丢勒(Nicolas Fatio de Duillier)的联系十分密切,后者一开始便被牛顿的引力定律所吸引。 1691年,丢勒打算编写一个新版本的牛顿《自然哲学的数学原理》,但从未完成它。一些研究牛顿的传记作者认为他们之间的关系可能存在爱情的成分。 不过,在1694年这两个人之间的关系冷却了下来。在那个时候,丢勒还与莱布尼茨交换了几封信件。

在1699年初,皇家学会(牛顿也是其中的一员)的其他成员们指控莱布尼茨剽窃了牛顿的成果,争论在1711年全面爆发了。牛顿所在的英国皇家学会宣布,一项调查表明了牛顿才是真正的发现者,而莱布尼茨被斥为骗子。但在后来,发现该调查评论莱布尼茨的结语是由牛顿本人书写,因此该调查遭到了质疑。这导致了激烈的牛顿与莱布尼茨的微积分学论战,并破坏了牛顿与莱布尼茨的生活,直到后者在1716年逝世。这场争论在英国和欧洲大陆的数学家间划出了一道鸿沟,并可能阻碍了英国数学至少一个世纪的发展。

3.欧几里德与《几何原本》

关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图的学说。公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说: “几何无王者之路。”意思是, 在几何里,没有专为国王铺设的大道。 这句话后来成为传诵千古的学习箴言。斯托贝乌斯(约 500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。欧几里得说:给他三个钱币,因为他想在学习中获取实利。
欧几里得生于雅典,是柏拉图的学生。他的科学活动主要是在亚历山大进行的,在这里,他建立了以他为首的数学学派。
欧几里得,以他的主要着作《几何原本》而着称于世,他的工作重大意义在于把前人的数学成果加以系统的整理和总结,以严密的演绎逻辑,把建立在一些公理之上的初等几何学知识构成为一个严整的体系。
欧几里得建立起来的几何学体系之严谨和完整,就连20世纪最杰出的大科学家爱因斯坦也不能对他不另眼相看。
爱因斯坦说:“一个人当他最初接触欧几里得几何学时,如果不曾为它的明晰性和可靠性所感动,那么他是不会成为一个科学家的。”
《几何原本》中的数学内容也许没有多少为他所创,但是关于公理的选择,定理的排列以及一些严密的证明无疑是他的功劳,在这方面,他的工作出色无比。
欧几里得的《几何原本》共有13篇,首先给出的是定义和公理。比如他首先定义了点、线、面的概念。
他整理的5条公理其中包括:
1.从一点到另一任意点作直线是可能的;
2.所有的直角都相等;
3.a=b,b=c,则a=c;
4.若a=b则a+c=b+c等等。
这里面还有一条公理是欧几里得自己提出的,即:整体大于部分。
虽然这条公理不像别的公理那么一望便知,不那么容易为人接受,但这是欧氏几何中必须的,必不可少的。他能提出来,这恰恰显示了他的天才。
《几何原本》第1~4篇主要讲多边形和圆的基本性质,像全等多边形的定理,平行线定理,勾股弦定理等。
第2篇讲几何代数,用几何线段来代替数,这就解决了希腊人不承认无理数的矛盾,因为有些无理数可以用作图的方法,来把它们表示出来。
第3篇讨论圆的性质,如弦、切线、割线,圆心角等。
第4篇讨论圆的内接和外接图形。
第5篇是比例论。这一篇对以后数学发展史有重大关系。
第6篇讲的是相似形。其中有一个命题是:直角三角形斜边上的矩形,其面积等于两直角边上的两个与这相似的矩形面积之和。读者不妨一试。
第7、8、9篇是数论,即讲述整数和整数之比的性质。
第10篇是对无理数进行分类。
第11~13篇讲的是立体几何。
全部13篇共包含有467个命题。《几何原本》的出现说明人类在几何学方面已经达到了科学状态,在经验和直觉的基础上建立了科学的、逻辑的理论。
欧几里得,这位亚历山大大学的数学教授,已经把大地和苍天转化为一幅由错综复杂的图形所构成的庞大图案。
他又运用他的惊人才智,指挥灵巧的手指将这个图案拆开,分成为简单的组成部分:点、线、角、平面、立体——把一幅无边无垠的图,译成初等数学的有限语言。
尽管欧几里得简化了他的几何学,但他坚持对几何学的原则进行透彻的研究,以便他的学生们能充分理解它。
据说,亚历山大国王多禄米曾师从欧几里得学习几何,有一次对于欧几里得一遍又一遍地解释他的原理表示不耐烦。
国王问道:“有没有比你的方法简捷一些的学习几何学的途径?”
欧几里得答道:“陛下,乡下有两种道路,一条是供老百姓走的难走的小路,一条是供皇家走的坦途。但是在几何学里,大家只能走同一条路。走向学问,是没有什么皇家大道的,请陛下明白。”
欧几里得的这番话后来推广为“求知无坦途”,成为传诵千古的箴言。
关于欧几里得的一生的细节,由于资料缺乏,我们知道得很少。有一个故事说的是欧几里得和妻子吵架,妻子很为恼火。
妻子说:“收起你的乱七八糟的儿何图形,它难道为你带来了面包和牛肉。”
欧几里得天生是个憨脾气,只是笑了笑,说道:“妇人之见,你知道吗?我现在所写的,到后世将价值连城!”
妻子嘲笑道:“难道让我们来世再结合在一起吗?你这书呆子。”
欧几里得刚要分辩,只见妻子拿起他写的《几何原本》的一部分投入火炉中。欧几里得连忙来抢,可是已经来不及了。
据说妻子烧掉的是《几何原本》中最后最精彩的一章。但这个遗憾是无法弥补的,她烧的不仅仅是一些有用的书,她烧的是欧几里得血汗和智慧的结晶。
如果上面这个故事是真的,那么他妻子的那场震怒可能并不是欧几里得引起来的。因为古代的作家们告诉我们,他是一个“温和慈祥的老头。”
由于欧几里得知识的渊博,他的学生们简直把他当作偶像来崇拜。欧几里得在教授学生时,像一个真正的父亲那样引导他们,关心他们。
然而有时,他也用辛辣的讽刺来鞭挞学生中比较傲慢的,使他们驯服。有一个学生在学习了第一定理之后,便问道:“学习几何,究竟会有什么好处?”
于是,欧几里得转身吩咐佣人说:“格鲁米阿,拿三个钱币给这位先生,因为他想在学习中获得实利。”
欧几里得主张学习必须循序渐进、刻苦钻研,不赞成投机取巧的作风,更反对狭隘的实用观念。后来者帕波斯就特别赞赏他这谦逊的品德。
像古希腊的大多数学者一样,欧几里德对于他的科学研究的“实际”价值是不大在乎的。他喜爱为研究而研究。
他羞怯谦恭,与世无争,平静地生活在自己的家里。在那个到处充满勾心斗角的世界里,对于人们吵吵闹闹所作出的俗不可耐的表演,则听之任之。
他说:“这些浮光掠影的东西终究会过去,但是,星罗棋布的天体图案,却是永恒地岿然不动。”
欧几里得除了写作重要几何学巨着《几何原本》外,还着有《数据》、《图形分割》、《论数学的伪结论》、《光学》、《反射光学之书》等着作。

‘贰’ 数学小知识手抄报内容文字

1.数学手抄报内容
第一写关于数学的名言罗素说:“数学是符号加逻辑”毕达哥拉斯说:“数支配着宇宙”哈尔莫斯说:“数学是一种别具匠心的艺术”米斯拉说:“数学是人类的思考中最高的成就”培根(英国哲学家)说:“数学是打开科学大门的钥匙”布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”黑格尔说:“数学是上帝描述自然的符号”魏旁并尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”柏拉图说:“数学是一切知识中的最高形式”考特说:“数学是人类智慧皇冠上最灿烂的明珠”第二写关于数学的意义 数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。

它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。

第三写关于数学的小故事数学名人小故事-康托尔 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。

他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷 *** ”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。

康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的 *** 论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。

来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分蠢启旁裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。

1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。

1918年1月6日,康托尔在一家精神病院去世。最后,可以写关于数学的笑话小明小学数学考试,回来后他妈问他考得怎么样.小明说:"我基本上会做,但有一题3乘7,我怎么也想不出来.最后打铃了,我不管三七二十一就写了个18."。
2.小学生数学手抄报的内容
最低0.27元开通文库会员,查看完整内容> 原发布者:窃租G4659 数学小笑话:买汤从前,有个土财主从来没出过门。

一天,他带了一些钱和一些吃的东西自己上了街,逛了半天,感觉非常饿,于是就吃了一些东西,可又感觉特别渴,便走进了一家汤店。他找了一个位子坐下,然后大声叫道:“小二,来碗鸡汤。”

小二听了很快就端上了一碗香喷喷、热乎乎的鸡汤,并且对土财主说:“每碗十二文。”土财主冲着小二瞪大了眼睛,“我有的是钱!”随即摸了摸自己的口袋,这时土财主呆住了,袋子有个洞,他急忙把口袋翻了翻,还好还有十文钱,可这帐怎么算呢?突然,他又大口大口的喝起来,直到碗里还有一些。

这时小二也走过来了,说:“付钱。”土财主甩出了十文钱,小二一看急了,说:“我刚刚不说了,一碗汤十二文,你怎么给十文呢?”土财主又冲着他说:“我的汤都喝了嘛,没有,我只喝了十二分之十,一碗汤十二文,所以我给你十文呀!”说着,土财主拍着 *** 走出了汤店,小二还傻呼呼的站在那儿想呢。

差别在哪方老师在数学课上问阿细:“一半和十六带橡分之八有何分别?”阿细没有回答。方老师说:“想一想,如果要你选择半个橙和八块十六分之一的橙子,你要哪一样?”阿细:“我一定要一半。”

“为什么?”“橙子在分成十六分之一时已流去很多橙汁了,老师你说是不是?”报告灾情从前有个县遭了灾,村民们推选了一个老头去报告灾情,要求减点税。老头来到县衙,县官问他:“小麦收了几成?”老头答:“五成。”

“棉花呢?”“三成。”“玉米呢?”“两成。”

县官听了大怒道:“有。
3.数学手抄报的内容怎么写啊
中国数学界的伯乐——熊庆来 人们在赞美千里马时,总会记起识马的伯乐。

中国科学界在赞美华罗庚时,也不会忘记他的老师、中国近代数学的先驱——熊庆来。 熊庆来(1893—1969),字迪之,云南弥勒人,18岁考入云南省高等学堂,20岁赴比利时学采矿,后到法国留学,并获博士学位。

他主要从事函数论方面的研究,定义了一个“无穷级函数”,国际上称为熊氏无穷数。 熊庆来热爱教育事业,为培养中国的科学人才,做出了卓越的贡献。

1930年,他在清华大学当数学系主任时,从学术杂志上发现了华罗庚的名字,了解到华罗庚的自学经历和数学才华以后,毅然打破常规,请只有初中文化程度的19岁的华罗庚到清华大学。在熊庆来的培养下,华罗庚后来成为着名的数学家。

我国许多着名的科学家都是他的学生。在70多岁高龄时,他虽已半身不遂,还抱病指导两个研究生,这就是青年数学家杨乐和张广厚。

熊庆来爱惜和培养人才的高尚品格,深受人们的赞扬和敬佩。早在1921年,他在东南大学(南京大学前身)当教授时,发现一个叫刘光的学生很有才华,经常指点他读书、研究。

后来又和一位教过刘光的教授,共同资助家境贫寒的刘光出国深造,并且按时给他寄生活费。有一次,熊庆来甚至卖掉自己身上穿的皮袍子,给刘光寄钱。

刘光成为着名的物理学家后,经常满怀深情地提起这段往事,他说:“教授为我卖皮袍子的事,十年之后才听到,当时,我感动得热泪盈眶。这件事对我是刻骨铭心的,永生不能忘怀。

他对我们这一代多么关心,付了多么巨大的热情和挚爱呀!” 数学之父—塞乐斯 (Thales) 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。

他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。

在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。

塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。

如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。

在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。

塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。

它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。

塞乐斯最先证明了如下的定理: 1.圆被任一直径二等分。 2.等腰三角形的两底角相等。

3.两条直线相交,对顶角相等。 4.半圆的内接三角形,一定是直角三角形。

5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。 这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。

相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。

塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。

数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。 塞乐斯的墓碑上列有这样一段题辞:"这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。

" 【成语】:朝三暮四 【故事】: 据说,这是记载在“庄子”里面的一则寓言故事。宋朝有一个人在他家养了一大批的猴子,大家都叫他狙公。

狙公懂得猴子的心理,猴子也了解他的话,因此,他更加的疼爱这些能通人语的小动物,经常缩减家中的口粮,来满足猴子的食欲。有一年,村子里闹了饥荒,狙公不得不缩减猴子的食粮,但他怕猴子们不高兴,就先和猴子们商量,他说:“从明天开始,我每天早上给你们三颗果子,晚上再给你们四颗,好吗?”猴子们听说他们的食粮减少,都咧嘴露牙的站了起来,表现出非常生气的样子。

狙公看了,马上就改口。
4.数学手抄报的内容
数学知识是最纯粹的逻辑思维活动,以及最高级智能活力美学体现。

——普林舍姆(Pringsheim) 历史百使人聪明,诗歌使人机智,数学度使人精细。——培根(Bacon) 数学是最宝贵的研究精神之一。

——华罗庚没有哪门学科能比数学更为清晰地阐明自然界的和谐性。——卡罗斯(Carlos) 数学是规律和理论的裁判和主宰者专。

——本杰明(Benjam in) 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因(Klein) 数学的本质在于它的自由属。

——康托尔(Cantor) 在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要。 ——康托尔(Cantor)。
5.数学小报内容可以写什么
一、对于内容方面,例如:栏目A、数学幽默笑话 100分 期末考试后,小亮回家说:“这回两门考了100分。”

爸爸妈妈听后很高兴。 小亮接着说:“是两门加起来100分。”

爸爸听了扬手就要打,妈妈劝住说:“语文就算得了40分,算术总该60分吧,总还有一门及格嘛!”小亮委屈地说:“妈,不是那么算法!语文是10分,算术0分,加在一块不正好是100分吗? 栏目B、趣味数学题 小机灵几岁 有位叔叔问“小机灵”几岁了,他说:“如果从我三年后年龄的2倍中减去我三年前年龄的2倍,就等于我现在的年龄? 过桥今有a b c d 四人在晚上都要从桥的左边到右边。此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。

四人过桥最快所需时间如下为:a、2 分;b、3 、分;c、8 分;d 、10分。走的快的人要等走的慢的人,请问如何的走法才能在21 分让所有的人都过桥? 栏目C、《数学家小时候的故事》 欧拉(1707~1783) 欧拉瑞士数学家,英国皇家学会会员。

欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为着名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。

1727年,他应邀去俄国圣彼得堡科学院工作。过度的劳累,致使他双目失明。

但是,这并没有影响他的工作。欧拉具有惊人的记忆力。

据说,1771年圣彼德堡的一场大火,把他的大量藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论着多部。

欧拉这位18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等领域都作出了巨大贡献,从而确定了他作为变分法的奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。

欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。 欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。

栏目D、数学名人名言 数学是科学的皇后,而数论是数学的皇后。———高斯 只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。

———希尔伯特二、另外,做小报,要在板面上做好布局,还要用不同颜色的粉笔或彩色笔画出一些图案,包括太阳、花草、教学工具甚至人物图像之类,用来点缀(zhuì)小报,增添阅读者、观看者的兴趣。
6.数学小知识手抄报内容 一两百字
可以写一些数学家的故事、应用题小常识

■简历:

1933年5月22日生于福建闽侯。家境贫寒,学习刻苦,他在中、小学读书时,就对数学情有独钟。一有时间就演算习题,在学校里成了个“小数学迷”。他不善言辞,为人真诚和善,从不计较个人得失,把毕生经历都献给了数学事业。高中没毕业就以同等学历考入厦门大学。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。

■主要成果:

1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。

陈景润除攻克这一难题外,又把组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发明了科学论文70余篇,并有《数学趣味谈》、《组合数学》等着作。

陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。他是第四、五、六届全国人民代表大会代表。着有《数学趣味谈》、《组合数学》等。

■巨星的陨落 :

1984年4月27日,陈景润在横过马路时,被一辆急驶而来的自行车撞倒,后脑着地,酿成意外的重伤。雪上加霜,身体本来就不大好的陈景润,受到了几乎致命的创伤。他从医院里出来,苍白的脸上,有时泛着让人忧郁的青灰色,不久,终于诱发了帕金森氏综合症。

1996年3月19日,着名数学家陈景润因病长期住院,经抢救无效逝世,终年63岁。

这是数学家陈景润的,你可以选其中一段
7.数学手抄报的内容
学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里。

美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家。两星期后,她接到医院寄来的一张帐单,款数是63440美元。

她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡。后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元。

点错一个小数点,竟要了一条人命。正如牛顿所说:“在数学中,最微小的误差也不能忽略。”

祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。

祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926

华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。

1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。

1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。

1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。

1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。

华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。

.一位农民养了9只羊、7口猪、5头牛。论价格,2只羊可换一口猪,5只羊可换1头牛。

他要把这些牛、羊、猪分给3个儿子,不但没人分得的家畜头数要相同,而且价值也要相等。你能想出一个分配方案吗? 答案:大儿子分1头牛、5口猪、1只羊;二儿子分2头牛、1口猪、4只羊;三儿子分2头牛、1口猪、4只羊。

4.两辆车相距1500米。假设前面的车以90km/h的速度前进,后面的车以 144km/h的速度追赶,那么两辆车在相撞钱一秒钟相距多远? 答案:相距15米。

5.有甲、乙两个公司招聘经理。甲公司年薪10万元,没年提薪一次,每次加薪2万元;乙公司半年薪金5万元,每半年提薪一次,每次加薪5千元。

问去哪个公司挣得的薪水更多? 答案:去乙公司挣得的薪水更多。6.俄国着名数学家罗蒙诺索夫向邻居借《数学原理》一书,邻居对他说:“你帮我劈10天柴,我就把书送给你,另给你20个卢布.”结果他只劈了7天柴。

邻居把书送给他后,另外付了5个卢布。《数学原理》这本书的价格是多少卢布?答案:书的价格是30卢布 。

7.瓶中装有浓度15%的酒精1000克,现分别将100克400克的a、b两种酒精倒入瓶中,则瓶中酒精的浓度变为14%,已知a种酒精的浓度是b种酒精的2倍,求a种酒精的浓度?答案:20。
8.数学小报内容
数学手抄小报与数学教学 多年来,我在小学中高年级学生中进行了学办数学手抄小报的尝试,将数学教学与办报活动有机结合,取得了一定的成效。

下面谈谈我的具体做法和体会。 一、正确引导,以报促学 为了丰富学生的课余生活,当我宣布要学生每个月办出一张数学手抄小报时,学生既感兴趣又无从下手,这时我趁机专门给学生上了一节数学手抄小报指导课,讲清办数学手抄小报的目的和要求、注意事项、怎样办等,让学生有个大概眉目。

为了给学生提供更具体的指导,我特别编制了数学手抄小报内容、形式、版面要求提示表(略)各一份,供学生办报时参照。 在指导学生办数学手抄小报的过程中,我注意做到以下几个“结合”。

1.个人努力与团体协作相结合。 让学生办数学手抄小报,一般要求通过个人努力来完成,但是不排除三五人协作和小组的帮与带,以便充分发挥团体协作的优势。

2.学习数学与反映思想相结合。 学生办数学手抄小报所用的稿件,除了选摘外,还要求学生自撰、征集。

学生在办数学手抄小报时,我并不刻意要求他们一律用数学内容,凡是与学习数学有关的内容都可以采用。例如,介绍一个学习数学的经验或教训、反映学习上的疑难和困惑、记一堂有趣的数学活动课。

这样一来,学生既学到了数学知识,又反映了思想状况,有利于教和学。 3.开展活动与美化环境相结合。

学生交来的数学手抄小报,我每期都要组织学生或品尝、阅读,或提出修改建议,或评选优秀作品,或交流办报经验。与此同时,我还有意组织学生开展“手抄报评比”“优秀作品欣赏”“优秀作品展”等活动。

学生在活动中增长了见识,培养了兴趣,提高了学习数学的自主性和自觉性,而且这一期又一期、一张又一张图文并茂的、迷人的数学手抄小报在展览的同时装饰了教室,美化了校园。学生从中可以受到潜移默化的思想情感熏陶和审美教育。

4.长期坚持与精神鼓励相结合。 任何事物的发展和提高都不是一朝一夕所能办到的,办数学手抄小报也不例外,它是在长期坚持的情况下,逐渐产生效果和提高办报水平的。

如有的学生对办报开始很不感兴趣,马虎了事,这时我及时给予鼓励和督促,久而久之,他们也能办出张像样的数学手抄小报来,并且在学习态度上发生了奇迹般的变化。有的学生甚至在排版、绘图、书写等方面很有创意。

二、长期实践,体会深刻 经过一段时间的尝试和训练,我感到学生在办报的过程中,增长了见识,活跃了思维,端正了学习态度,增强了综合素质。全班大多数学生的数学作业做得规范整洁了,不少学生对数学产生了浓厚的兴趣,有的学生经常向我询问办报时遇到的一些数学难题。

特别是有一次,我在讲“0能被任何自然数整除”这道判断题是对的时,有个学生对它提出了质疑:“假如这道题是对的,也就是说0是任何自然数的倍数,任何自然数是0的约数。而课本上讲一个数最小的倍数是它本身,最大的约数也是它本身。

0比任何自然数都小,不可能是自然数的倍数。任何自然数都比0大,不可能是0的约数。

所以我认为这道题是错的。”我当时便表扬了这个学生敢于质疑,并做了解释:“这道题应该是对的,这是整除的含义所规定的,课本上的两个结论是有前提的,是在自然数范围内讨论得到的。”

课后我询问这个学生为什么能提出这样的见解,这个学生说:“办数学手抄小报时曾经看到过这种想法。”我暗暗吃惊的同时,惊喜办报带给学生的间接效应。

总之,坚持办数学手抄小报,无论是对学生数学意识的形成,还是数学学习方法的改进;无论是对数学知识的掌握,还是数学能力的提高;无论是对学生竞争意识的培养,还是团结协作意识的形成,都有其独特的功能和作用。经过多年的实践,我深深地体会到,指导学生办数学手抄小报有以下几点好处。

1.有利于学生综合素质的提高。 数学手抄小报是以学生为主体,或“独立创业” 或“团体协助”而创作出来的能反映思想教育、数学教育和美育的综合艺术。

学生必须具备多种文化知识和能力才能办出一张张图文并茂的并能获得大家好评的小报。坚持办数学手抄小报,既培养了学生的动手操作能力、审美能力、思维能力和创新能力等,又使得学生在美术、写作、书法等方面的技能有了明显的进步。

2.有利于非智力因素的培养和形成,从而促进课堂教学。 (1)激发学生学习数学的兴趣,增强求知欲,配合数学教学。

学生在办报过程中,不断积累数学知识,丰富想象力,促使学生对数学产生浓厚的兴趣。这些都将有力地促进数学教学,使学生轻松地掌握数学知识。

(2)促进课外阅读,形成优良学风。 学生为了办出一张张迷人的数学手抄小报,必须广采博闻,进行大量的文字摘抄、图画剪贴和文章的写作。

他们常常废寝忘食地查阅、聚精会神地选择、一丝不苟地誊抄、认真负责地校对……这些都标志着优良学风的初步形成。 (3)促进团结友爱,形成优良班风。

在办报过程中,学生之间的帮与带、学习与协作,可以促进学生相互了解,加深友谊。随着时间的推移,班级逐渐达到内部的和谐,形成强烈的班集体意识。

(4)培养良好的学习习惯,促进数学学习。 办数学手抄小报是一。

阅读全文

与数学小百科怎么写相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:949
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050