A. 数学函数零基础怎么学
您好。那就先从变量,平面直角坐标系开始学习,然后是一次函数,反比例函数,二次函数,指数函数对数函数学~
B. 如何从零开始系统地学习数学
要想零基础学好数学,最主要的就是要回归课本,把书上的公式、定义、定理一定要背熟背会,这些定理是你会做题的一个基础,在把书上的公式、定理全都背熟、背会之后,下一步就是做题,做题也是有方法的,一定要从简单的题入手,而且要专项训练。
C. 数学函数零基础怎么学初中
函数作为初中数学的重难点,怎么才能学好呢?本文整理了相关内容,一起来看看吧!
首先就是熟悉坐标系
在除以学习过坐标轴以后,我们在初二阶段开始学习坐标系,坐标系是所有函数的容器,在所有的函数里面需要坐标系来体现的。
学会表示点
另外需要学会表示点,学会利用横纵坐标来表示点的位置和特点。学会表示点的位置,点的移动和点的特性。
理解函数概念
理解自变量和应变量的概念进而理解函数的概念,函数的概念理解了,理解了函数的概念才可以进行函数题的计算。
1、注重“类比”思想
不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法。初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。
2、注重“数形结合”思想
数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的“数形结合”。函数图象就是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。
3、注重自变量的取值范围
自变量的取值范围,是解函数问题的难点和考点。正确求出自变量取值范围,正确理解问题,并化归为解不等式或不等式组。这需要学生掌握函数的思想,不等式的实际应用,全面考虑取值的实际意义。
4、注重实际应用问题
学习函数的主要目的之一就是在复杂的实际生活中建立有效的函数模型,利用函数的知识解决问题。这也是新课标所倡导的学习,因此新教材大力倡导函数与实际的应用。
D. 零基础数学应该怎么学高数
零基础数学应该怎么学高数?对于零基础的人来说学习普通数学就已经很困难了,更何况是高数呢?那是不是就没有学习方法了呢?别担心,以下是我分享给大家的零基础数学学高数的方法,希望可以帮到你!
零基础数学学高数的方法
1、数学基础要打牢
MBA数学考试不像高考更不像奥数,要考察某一知识点的延伸,通过研究近几年的真题可以发现,试卷中的大多数题目都是对大纲知识点的直接考察。所以大家一定要把基础打牢,不要盲目追求深度,力争把基础分都拿到。如果连基础分都拿不到,难度分再没搞利索,那就得不偿失了。
那么如何打好数学基础呢?首先要通读教材,整理出大纲要求的知识点,形成知识网络,便于记忆;其次是深究各个知识点,对定义及用法着重分析。最后是对知识点进行融会贯通,通过做习题来巩固。
2、不同阶段,习题量应有所调整
一提起数学,很多人就会想起题海战术,题是需要做,但什么时候做,做多做少都是有讲究的。刚开始复习,基础又不是很好,应该以理论理解为主,先把相关概念弄清楚,可以用少量的习题来辅助理解。习题的选择也要注意,选择一些有针对性的习题来做,真正做到一个题消化一个知识点。
切忌一开始就以做题为主,不但会经常做错,打击信心,还得不到效果,浪费大量的时间。基础打牢之后习题就要多做了。通过做大量的习题来消化和巩固知识点,了解试题考查的维度,熟悉出题规律,另外,还要注意锻炼答题速度。在保证准确性的基础上,还要提高速度,确实不是一件容易的事,必须通过大量的练习来实现。
3、合理规划复习时间并严格执行有的小伙伴们特别随便......没有一个严格的学习计划,想学了就学点......不想学就就去干别的......甚至学着后面的望着前面的......还有的考生复习之前有一个计划,但一到真正实施就管不住自己了,总是不能保质保量的完成任务。当然,我们也不建议完全脱产学习,但不对自己残忍就是对竞争对手的仁慈,要用对待阶级敌人的态度对待学习任务。
4、心态(老话长谈,但一定要说)
现在大家工作生活上的压力都比较大,每个人在MBA复习过程中都会遇到一些困难,情绪上也会出现波动。适当聊聊天喝喝茶散散步是百试不爽的,实在没人聊可以找加油菌,总之要把自己的负面情绪发泄出来。
零基础数学学高数的技巧
一、背数学
我曾经有一位学生数学成绩一塌糊涂,甚至都想放弃数学,去参加不要求数学成绩的院校招生。直至一天他想到“背数学”的学习方法,他写到:
这个技巧是:不懂的问题,直接看解答,先背起来再说。如此一来,一题一般只要5分钟便背下来,从量来看,可以追赶得上成绩好的同学。
各位猜猜看看,从开始背数学后,她的成绩变好了吗?结果是,她的成绩进步神速,高中三年级时,数学模拟考试成绩还进入全国排名,并应届考上东京大学医学院。比她小一岁的弟弟采用了此方法,也成为该校创校以来第二位应届考入东京大学文学院的学生。
无独有偶,1995年北京市文科状元、北京大学段楠同学,也有类似的经历。她在北京四中读书时,高二第一学期期末考试只列上第30名,而且数学还没及格。那么,她是如何把数学成绩提上来的呢?她说:
学习数学有一个自己的小窍门,不一定对每个人有用,说出来仅供参考:如果能学好数学是背例题背出来。不采用题海战术,但是从每种类型的题中找出一两道典型题“背”过一两次,理解之后,再看到难题就会拿着例题往里套了。
二、教材试卷化,试卷教材化
之前有位学生成绩一直很稳定,但拔不了尖。为了她很苦恼,不知道怎么做才能打破这一局面。直至有一天她忽然想到把试卷和教材来个角色互换,具体做法:
试卷和教材“角色互换”步骤如下:
第一步,把试卷依照教材的顺序清理好,并编上序号。因为试卷基本都是按教材走的,清理起来并不费劲。
第二步,在试卷的开始处写上一段“导语”。主要内容有:一是此试卷考什么,二是与考试有关的知识要点。
第三步,在试卷结尾处,写上一段“小结”,总结自己考试情况,写出自己在知识上的缺陷。
她说,将这些试卷装订起来,反复阅读,实在比看教材过瘾。
再说教材与试卷的“角色互换”。这位同学的做法如下:
第一步,认真阅读教材。
第二步,阅读一段,就用若干问题以考题形式总结出来。
第三步,将问题和参考答案写在一个本上,至此,教材试卷化工作即已完成。
她说,教材上每一节或每一章往往也有思考题,但教材试卷化时,要比教材更细,可以一小段就出一道题。
三、回过来做课本上的题
老师有个建议:索性先回过头来,老老实实地、认认真真地把课本上的题全做一遍。这么做的原因有:
第一:课本上的习题,是编教材的老师费尽心思、反复考虑才挑选出来,是最具代表性的题,是最具代表性的题,是最好的题,值得去做。
第二:一般来讲,课本上的习题,尤其注意与概念、公式、定律的联系,而数学成绩不太稳定的同学的一大通病,就是基础不劳,概念、公式、定律等掌握得不是很好,为此也值得去做课本上的题。
第三:课本上的习题,有的老师讲过,有的教参书上有比较详细的讲解,比较容易做对,从而增强自己的信心。
以优异成绩考入中山大学的2001级本硕连读班的的洪伟雄同学也有同感。他说:“第一,做题应先做课本上的题。第二,做题还有个“适度”问题。”
零基础数学学高数的建议
第一,要具备不卑不亢的心态
数学并非难,只是它的表述体系和思维要求,对于多数中国学生比较陌生。要把它当作全新的东西来认识,就跟学习一门新语言一样。以前自己学的东西,包括高中知识和AP数学等,记住概念即可,思维推导不要沿用。然后严格按照老师讲的思维方式,不厌其烦的推导和证明,慢慢一回生二回熟。几年前华人数学天才陶哲轩给UCLA本科生讲Honor Analysis(荣誉数学分析)的时候,上来进度非常慢,前一个月都在证明皮亚诺公理、集合论和基本的映射理论,但后来可以越学越快,而且学生越学越Hi。拳不离手,曲不离口,学语言要勤动口和动笔,学数学也要没事常动脑。
就算文科生一样可以学好数学:20世纪俄罗斯数学学派掌门人、莫斯科国立大学数学系主任柯莫高(Kolmogorov,又译柯尔莫格洛夫)大一是读历史的。美国人魏爱华(Edward Witten)更奇葩,本科四年读的都是历史和语言学,博士申请UWM的经济学博士,读了半年退学,自修数学和物理,23岁考进Princeton,硕转博再同时搞数学和物理。16年后,他站在菲尔兹奖的领奖台上。
我说过了基础数学其实是哲学,而哲学算文科还是理科都有道理。另一方面,国内就算奥赛摘金夺银,到美国也要扎扎实实的学。因为奥赛国际金牌在欧美的精英面前多数是渣:俄罗斯盖芳德(Gelfand)15岁读完代数几何教父高探蝶(Grothendieck)的名着EGA(代数几何原理),这套书让北大博士去读都够呛。我们石溪的米糯教授本科大一在《数学年鉴》上发论文,这是数学界最高学术期刊,每年中国大陆都很难有一篇文章发表。
这里特别要说一下美国数学教学的二段教学法:不同于俄罗斯和中国上来就是带证明的数学分析和高等代数,美国的教学更为亲民:上来先是微积分和不带证明的线性代数,内容比较简单,作业和考试很多中国学生可以依靠高中基础秒杀之。但不少人练习不够,很多知识没搞透,方法技巧也不够熟练。然后到了第二段,数分和高代一开,很多人欲哭无泪。这就要求第一阶段,哪怕觉得这些题再傻,一本书一道不落地做完是很有必要的。 然后第二段就要细读书,多问老师。在美国基础数学能学好的中国人,要么是自己天才,要么就把教授办公室的椅子坐穿。
第二,保证数学的学习时间
要是天才并且喜欢数学,那你自然会给数学大量时间。如果是为了将来胜任其他领域而学数学,要记住大一大二对于打好数学基础是最宝贵的。所以,建议每天先完成其他学科的作业,然后把大块时间分配给数学的看书做题细琢磨。
我目前主要是修各种数学课和一门应用数学的概率论,每天时间大体是这样分割的:睡觉6小时,吃饭包括饭后的休息2小时,健身和洗澡2小时,交通1小时,个人爱好1小时(抄抄四书五经,读读文艺的歌词,主要是墨明棋妙的还有林夕的),机动时间1小时,剩下11小时是听课和课下学习。周末多用两小时坐校车去买个菜,路上一直思考,也相当于最终学习10小时。
谁说数学天才每天悠哉游哉?那么最年轻的菲尔兹奖得主,27岁得奖的赛赫(Jean-Pierre Serre)够天才了吧?他自述道:习惯带着数学题入梦,醒来往往有思路。故我用最爱的《红楼梦》第一回作为他的雅号:“梦幻通灵”赛赫(与“造化阴阳”高探蝶,“迷津慈航”艾抵涯(Sir Michael Atiyah,英国皇家学会会长,敕封爵士)并列20世纪世界第一的数学家)。数学多好算好?别说拿A,满分都是不够的。一本书读完,知识和方法不超纲的题目要难不住你(by“现代微分几何之父”陈省身)。一本书读完,同一领域下一阶段的书要能自通30%(by菲尔兹奖得主Curtis McMullen的导师Dennis Sullivan,石溪数学四大导师之苏立文)。校内传的什么每天学习八小时那是给别的学科的。每天八小时想学好数学?做梦!
第三,学会科学的思维方法
(1)数学思维的三个方面
任何数学的定义、定理说透了也就三部分:
第一是它本身的文字和(或)符号、 公式内容;
第二是它在数学知识体系中的位置,与其他数学内容的逻辑关系,包括由什么可以推出来该定义或定理,它又可以(与其它定理一起)推出些什么;
第三是它所涉及的范畴有什么具体实例(比如循环群就有旋转图形、整数加群和同余模加群等例子),这些例子又有何作用,能否在数学中或数学外(典型的如几何和物理)取得应用。
这就分别是数学对象的本体论、方法论和目的论。柯莫高说:“的确学生对数学的适应性存在差异,这种适应性表现在:
1、算法能力,也就是对复杂式子作高明的变形,以解决标准方法解决不了的问题的能力。
2、几何直观的能力,对于抽象的东西能把它在头脑里像图画一样表达出来,并进行思考的能力。
3、一步一步进行逻辑推理的能力。
这些对应的就是掌握数学概念的三方面需要什么能力。提高算法能力最好多做题,几何直观除了做题还要平时多留意,多联系生活实际;逻辑推理这个往往是中国学生的弱项,毕竟我们母语的方块字二维画面性远远超过西方拼音文字,而一维线形(逻辑链的内在属性)却不足。汉字个个如画,横竖左右写均可,而西方拼音文字就得一条路从左往右,上下写都够呛。故逻辑推理要特别练习。练习逻辑推理的方法关键在定理的证明,下面会详述。
(2)如何课前预习
一开始微积分可以多做一点,而数分和高代等带证明的预习下一节课内容即可。先回顾上堂课所学知识,再看新章节内容:先略读本章节,看清有几个定义(Definition),几个定理(Theorem)和引理(Lemma),有哪些例子(Example)和注释(Remark)。如果把数学比作一门语言,定义就是名词,定理和引理是句子,而例子和注释相当于古文经典中的注和疏。定义一定要自己品味,比较长的拆开句子成分慢慢看,不行就抄。日本第一个菲尔兹奖小平邦彦大学时抄过整本Van de Warden的代数,咱们抄书不丢人。 定义要么是全新的,这个不急着理解,往后看看;要么是基于以前内容的,这个不妨回顾一下相关内容再继续看。
遇到定理就要注意,课本的证明不要先看,自己理解定理内容后,把定理当作习题徒手证一遍,写下来,再与课本原文比较,查找二者的不同:自己的证明是不是漏某条件或者把某需要说明的当做显然了(初学者常犯错误),是不是有多余的语句,是不是有地方用错了。凡是不同处,都要重点思考,这样进步就快了。如果实在想不起来,就看看书本怎么证的。对于自己的不足,要整理到上述公式、逻辑或几何三个大类中,并提醒自己注意(如国内分析教材从罗尔定理证明拉格朗日中值定理,很多人不会把一般的函数构造成符合罗尔定理条件的函数,这个就牵涉到公式变形能力和逻辑能力)。
引理也是这么证。别小看引理,朗兰兹猜想中的基本引理之一,吴宝珠证出来就是一个菲尔兹奖。至于例子,也是不要先看,自己看了定理,自己想至少两个例子,一个是典型的,一个是退化的极限情况(by Halmos,《我要做数学家》和《希尔伯特空间习题集》的作者,芝加哥大学鼎盛时期和陈省身等共事的数学家)。例如高中解析几何的双曲线,分母的a^2, b^2当然大于零,可以找出来一个例子。如果其中一项等于零,就退化成两条直线,这就是退化的极限情况。不要小看退化,这正是跟以前知识的联系。自己想了例子,其实潜意识中,注释的内容已经过了一遍。然后不必太早做习题,再回顾一下整个思维过程有没有需要看课本提示的地方,有没有自己能看懂但是跟以往惯性思维相悖的地方,有没有突然顿悟的地方。这都要记下来,上课等老师讲到这里时要格外留心。
(3)听课
美国的数学教授基本还是写黑板,而且不会太快。上课公式一写几黑板的那是应用数学教授,噼噼啪啪打幻灯的在石溪一定不是数学或物理教授。 所以,有时间记笔记。但不必全记住,把预习的成果调动起来,老师讲的时候跟自己脑中的备份随时印证并修正。就一个建议,教授不停嘴,学生不动笔。真正听好了,上课一字不写又何妨?课下完全可以轻松补全并注上自己的心得见解。
(4)课下
先整理笔记,一定有自己的见解,全抄老师的对于学应数是有用的,对于学数学则是浪费时间。数学界的师生关系往往很融洽,但思维上绝对是批判继承和启发继承,学我者昌,似我者亡。然后是定义再品味一下,定理和引理自己再证一遍,比较老师的证明、课本的证明和自己当初的证明,这次不仅要能说出哪个好,还要能说出为什么好。
然后是做题了。除了开始的微积分要刷书,带证明的课,课本做好作业题就够了,因为老师选的可能不是经典教材(经典的往往比较难,很多美国学生受不了)。但每个题要做精,做完一题回顾自己的思路历程,并对其中的公式变形、逻辑推理和几何直观进行归类。实在做不出来,画个记号,改天再看,两天都做不出来才可以看解答。对于解答中自己想不到的,要特别标注,常常回顾。然后就是选一本这一门课比较经典的书,按照上文预习和做题的路子走一遍。经典教材的知识点和思路要自己总结,每过一两章节,找一张大的纸画下来本章定理的逻辑体系图。经典教材的题目最好都做,做不出来,Office Hour坐穿椅子去。
(5)心理状态
很多人开始觉得数学难,然后生怕基础打得不牢,一个定理看半天,看似很认真很投入,其实就算理解了思维也很僵化,而且容易跟不上进度。这就像打羽毛球和练书法,你心里紧张,手抓得太紧,反而发不出力来,写的字也不好看。掌心要虚着,身体要保持随时可以发力的弹簧状,击球时蹬地转体推肩压臂一套动作一气呵成,手掌瞬间抓紧最后一次加速,这才能打出林丹那样硬砸开李宗伟铁板防御的扣杀。书法所谓挥洒,也是如此。要保持轻微的紧张和激动,有点小期待,随时能调动已有知识,并可以多角度观察新知识,思维能发散也能迅速收回并集中攻关。
这种感觉一旦找到,妙不可言。不过重难点也要适当文火慢炖:如果教材中有令自己感到太难的思考,头一天理解了要标记,第二天要试着不看书回忆。曾任Princeton和University of Wisconsin Madison教授,现坐镇石溪的微分几何大家陈秀雄先生在《初遇尤金·卡拉比》中写道,当年导师卡拉比告诉过他:如果你不能在脑海中重复整个论证过程,那么它就没有成为你的一部分。
猜你喜欢:
1. 学习数学最快的方法
2. 大学数学为什么这么难
3. 正确学习数学的方法
4. 学习数学的有效方法有哪些
5. 基础差应该怎么学高等数学
E. 零基础高等数学怎么学
1、认真听课。既然是高数课,自然是老师讲课,一周的高数课的节数肯定不会少。老师上课就是最好的一个学习媒介。
2、做好笔记。书上一些没有的证明和老师上课随性发挥的精华可是一瞬即逝的。做好笔记还有益于上课认真专注。如果是自己看书也需要记笔记。
3、按时做作业。高数的作业会有很多,而它对学好高数的重要性也不言而喻的。而且,作业好还有平时分还高,最后总评也高不是。
4、学习公开课。如果对一些证明,推理,或者概念不清楚,想要找个名师的话,网络上的公开课其实是一个非常好的选择。
高等数学有其固有的特点
这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显着的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。
F. 零基础怎么学函数
零基尺带罩础如果要学函数的话最好将数学的一些基本运算法则进行复习
然后找一个好一点的陵闹学校进行报名参加行侍学习
G. 高中数学零基础应该怎么学
数学是高考拉开分数的最主要学科。那对于数学零基础的同学来说是不是就没得救呢?不是的,只要找到对的方法,也可以起死回生。以下是我分享给大家的高中数学零基础的学习方法的资料,希望可以帮到你!
高中数学零基础的学习方法
一、夯实基础的重点方法
特别是基础差的同学,一定要老老实实的从课本开始,不要求快,要复习一个章节,掌握一个章节。具体的方法是,先看公式、理解、记熟,然后看课后习题,用题来思考怎么解,不要计算,只要思考就好,然后再翻课本看公式定理是怎么推导的,尤其是过程和应用案例。特别注意这些知识点为什么产生的。如集合、映射的数学意义是为了阐述两组数据(元素)之间的关系。而函数就是立足于集合。并由此产生的充要条件等知识点。通过这么去理解,你会发现,数学基础很快就能掌握。但记住,一定要循序渐进,不能着急。
对于容易犯的错误,要做好错题笔记,分析错误原因,找到纠正的办法;不能盲目做题,必须在搞清楚概念的基础上做才是有效的,因为盲目大量做题,有时候错误或者误解也会得到巩固,纠正起来更加困难。对于课本中的典型问题,要深刻理解,并学会解题后反思:反思题意,防止误解;反思过程,防止谬误;反思方法,精益求精;反思变化,高屋建瓴。这样不仅能够深刻理解这个问题,还有利于扩大解题收益,跳出题海!
二、提高基础知识应用
在注重基础的同时,又要将高中数学合理分类。分类其实很简单,就是按照课本大章节进行分类即可。
高三复习过程中,速度快、容量大、方法多,特别是基础不好的同学,会有听了没办法记,记了来不及听的无所适从现象,但是做好笔记又是不容忽视的重要环节,那就应该记关键思路和结论,不要面面俱到,课后整理笔记,因为这也是再学习的过程。
再谈做题,做题大家都认为是高三复习的主旋律,其实不是的。不论对于哪种层次的学生,看题思考才是复习数学的主旋律。看题主要是看你不会做的题,做错的题,尤其是卡住你的那一个步骤。为什么答案中这道题这个步骤这么写,为什么用这个公式。这个公式是从那几个条件确立的,它的出现时为了解决什么问题。这是思考方向。很多同学都有这个问题,题目不会做,往往就是一步卡死,只要这一步解决了,后面都会。这就是因为没有找到应用的要点。
高中数学零基础的学习技巧
一、预习是聪明的选择
最好老师指定预习内容,每天不超过十分钟,预习的目的就是强制记忆基本概念。
二、基本概念是根本
基本概念要一个字一个字理解并记忆,要准确掌握基本概念的内涵外延。只有思维钻进去才能了解内涵,思维要发散才能了解外延。只有概念过关,作题才能又快又准。
三、作业可巩固所学知识
作业一定要认真做,不要为节约时间省步骤,作业不要自检,全面暴露存在的问题是好事。
四、难题要独立完成
想得高分一定要过难题关,难题的关键是学会三种语言的熟练转换。(文字语言、符号语言、图形语言)
高中数学学习的误区
1、在认识上存在误区:
一些学生在高一、高二中数学成绩不错,甚至一些学生还参加了数学竞赛,他们中有一些人觉得自己“擅长”数学,觉得竞赛题目肯定比高考难,不知不觉就对高考中容易出现的数学问题放松了警惕。从以往的数学成绩统计中,我发现一些参加数学竞赛的学生高考成绩并非很高,意识的能动性很关键,如果对高考数学没有正确的认识,并且付诸相对的实践的话,很有可能让自己处于被动局面。
2、在第一轮复习中盲目的进行综合训练。
一些学生心态比较积极,很多人都买了综合卷,因此就进行急于求成式的训练,总是想着今早取得实质性的进步。其实这样是很不合理的,有一次课间休息得时候,一个学生拿着解析几何相关的难题来问我,我问他;“你们学校现在复习到这个章节了吗?”他说;:“没有,这是外面培训班老师给的作业”。从成绩上,这个学生成绩在我班上是倒数的,我一直提倡他们在适合的时间,做适合的事情。从进度上讲看,现在一些学校带着学生复习:函数、函数与导数、不等式、数列、三角函数、向量、立体几何。因为期中考试的内容就是到这里,而像解析几何一般都放在期中考试之后才学。同时这个学生成绩不好,主要原因是没有在适合的时间做适合的事情。
学生可以适当的做一些综合卷,但是要在所涉及的基础知识打好的基础上,间歇性、渗透性的做一些综合卷作为衡量进步的参照。但是对大部分学生来说,还是应该“地毯式”的复习,因为第一轮复习是高考的基石,有很多的时间让你利用。更方便你即使调整复习方向,让基础知识系统而完整。
3、靠题海战术提高成绩。
“只有多做题才能提升数学成绩”的观点,影响了许多学生,于是在现实中就有很多学生重复着:做题——对答案——再做题——再对答案、、、、、、好像高三了,就应该有做不完的题目,甚至一些学生只是完成老师交给的任务,就很少有时间去从提升做题质量方面着手,在做题中不能理性归纳的话,那么即使考试拿到了不错的分数,那么数学思想和能力还是欠缺,会有很多试卷做不了的。所以说,做适量的题目,注重对专题的归纳和总结,注重衍生,从不同的角度看问题,把握问题与知识点之间的普遍联系,寻找解题技巧和规律是很重要的。
4、匆忙赶进度,没有打好扎实的基础。
我拿过一些学校给学生的资料中发现:目录很全,内容缺了许多。从集合讲到函数,从函数讲到不等式,看上去,每个章节都复习完了,学生在平时做题中感觉也很好,我发现一些学校的复习进度很快,特别是一些普通中学,进度比那些重点中学都快。为什么在每次大考中,一些普通中学学生成绩不理想?是因为学生基础差?看上去学校把“目录”中的内容都讲了,可是背后却是:一路飞奔,一路不断的丢东西。所以这样下去,章节内容复习完了,考试内容可是还空着呢。
5、一些学生没有养成好的答题习惯,导致丢掉很多不该丢的分。
每次分析试卷,都有学生抱怨自己疏忽而丢掉一些不该丢掉的分数,就那北京学生来说,由于自己疏忽造成的丢分,平均每个学生丢了30分。所谓说,考试的分数就是你平时学习的体现,平时没有养成好的答题习惯,丢三落四,考试的时候想急于求成,步骤不合理,看问题不全面,等等,这些可能直接导致你数学分数上不去。一些学生交卷之后都觉得自己分数一定不很不错,可是发下试卷就傻眼。
6、心理原因导致数学成绩差。
有一部分学生平时数学成绩一直不好,有时候对数学充满恐惧感,觉得自己没有学习数学的天赋,导致自己对数学学科的排斥,越是这样,数学成绩越是上不去,甚至一些人的理由是:女生就是没有学习数学的天赋、我觉得这些都是由心理因素导致的。数学没有想象的那么难,但是最起码你得有信心,同时静心、潜心的去探索,根据自己的实际情况,循序渐进的学习,肯定会有起色的。我发现数学成绩一直不好的学生,首先没有坚持、静心的去学习。
猜你喜欢:
1. 正确学习数学的方法
2. 高考理科数学应该怎么学习
3. 高考状元怎样学数学
4. 学习大学数学的心得
5. 高中数学学习窍门
H. 高数零基础自学怎么开始
先了解高数的基本知识点,在查询资料,总结积累。
1、学高等数学需要哪些基础知识:函数的基本理论,对于幂函数,指数函数,对数函数有比较好的了解;数列的知识;最好具有三角函数的知识。其他的知识细节可以慢慢边学边补。
2、高数,又称高等数学,是比初等数学更高深的数学,是理、工科院校一门重要的基础学科,该课程的主要内容有,极限理论、常微分方程、多元微积分学与空间解析几何等。
3、学习高数的方法:建立良好的学习数学习惯,多质疑、勤思考、好动手、重归纳、注意应用;在学习高等数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中;在学习高等数学中要专心上课、及时复习、独立作业、解决疑难、系统小结。
I. 三角函数零基础应该从何学起,要掌握那些知识,怎样学比较高效率
从书店看看初中三年级的数学课本。
它上头有锐角三角函数。
再找一本高中一年级的数学课本。它上头有三角函数基本公式。
一,定义定理。
二,常用公式。
三,三个基本函数图像。
四,利桥枣缺用图像记忆性质。
五,教科书每个章节的后头都有小例题和小练习题。千万不可忽视!它们是解决难题的跳板和桥梁。
六,如果在某个场合需要计算某多少敏辩多少的三角函数值,可以用(哪怕是)手机上的计算器,都能查出来的。
但是:常用角岩雀的三角函数值,必须记住它。(30 45 60°的)。
俗语说 世上无难事只怕有心人。
J. 零基础怎么学习函数
找到键渣薯基本式子,然后就可以把别的式子推导出来,梁盯坚持每日推导一次,这一章在高考中占的分数颇多(估计这个内容会考差不多20分)。 注意,这一章不要去研究难题,努力把原理弄懂,解决稿者掉简单的题目,那么就可以了,因为三角函数本身简单,在高中而言是不会给考生出难题的。