‘壹’ 高考数学压轴题有哪些考向,有立体几何吗
高考数学碰败压轴题,一拍斗般是函数问笑贺颤题以及函数与解析几何的综合题,很少有立体几何,立体几何问题一般是第17题。
‘贰’ 高考压轴题一般是什么题型
高中数学压轴题一般最难的一道题,只有极少数人能完全做对,对于数学成绩比较好的同学来说,做高考 数学 压轴题虽然是一个挑战,但也很值得花时间和精力研究。
一、如何做高考数学压轴题 :
如果能考虑做液衡哗数学压轴题,并且想做对,那么数学成绩至少也应该在100分以上,甚至是高于120分。
对于分数在120以上这部分学生来说,数学压轴题三小问是要争取都做对的,那么平时除了训练基础题外,还要拿出一些时间专攻压轴题题型,多分析、多归类、多总结,研究做题思路和步闹行骤。
高中数学压轴题一般是函数题型,需要我们分类讨论,所以一定不要落下哪种情况忘记讨论,那样就容易出现失分点。试想,好不容易才会做了一道题目,却因为疏忽大意又没做对,岂不可惜。
除了分类讨论外,还要善于用多种方法解决计算问题,因为数学压轴题计算量是比较大的,即使有思路了,如果计算失误也会做错压轴题,白白浪费了宝贵的分数,所以要求计算又快又准。
‘叁’ 高考数学大题一般都有哪些题型
高考数学大题6大题型是:
1、三角函数、向量、解三角形
(1)三角函数画图、性质、三角恒等变换、和与差公式逗困。
(2)向量的工具性(平面向量背景)。
(3)正弦定理、余弦定理、解三角形背景。
(4)综合题、三角题一般用平面向量进行“包装”,讲究知识的交汇性,或将三角函数与解三角形有机融合。
重视三角恒等变换下的性质探究,重视考查图形图像的变换。
2、概率与统计
(1)古典概型。
(2)茎叶图。
(3)直方图。
(4)回归方程。
(5)(理)概率分布、期望、方差、排列组合。概率题贴近生活、贴近实际,考查等可能 性事件、互斥事件、独立事件的概率计算公 式,难度不算很大。
3、立体几何
(1)平行。
(2)垂直。
(3)角。
(4)利用三视图计算面积与体积。
(5)既可以用传统的几何法,也可以建立空间直角坐标系,利用法向量等。
4、数列
(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间郑指的关系。
(2)文理科的区别较大,理科多出现在压轴题位置的卷型,理科注重数学归纳法。
(3)错位相减法、裂项求和法。
(4)应用题。
5、圆锥曲线(椭圆)与圆
(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。
(2)圆的方程,圆与直线的位置关系。
(3)注重椭圆与圆、椭圆与抛物线等的组合题。
6、函数、导数与不等式
(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。
(2)函数是考查的核心内容,与导数结合,基本题型是判断函数的单调性,求函数的最 值(极值),求曲线的切山丛念线方程,对参数取值范 围、根的分布的探求,对参数的分 类讨论以及代数推理等等。
(3)利用基本不等式、对勾函数性质。
‘肆’ 对于高考数学压轴题 要多会些什么才好比如数列的。不动点。 做竞赛题吗那怎么下手呢
做竞赛题当然是有用的,不管是高考还是自主招生,特别是在考的难的时候,例如你提到的不动点,在变形线性分式递推的时候就可以无脑解决,而没接触过的那些人便只有数归一条路了,有时候通项再复杂点便束手无策了,再谈谈数列不等式,在通项函数单调凸性一致时坦枯前,积分不等式可是利器,它可败纯以直接给出裂项函数,可以参见2003年江苏高考压轴,如果没记错的话。还有一些导数不等式,如果你知道对数平均的话也是很好用的,甚至有些答案半页的题,你可以一行秒杀,除此之外还有一些,就不一列举,当然你不用系统学习竞赛,只需稍微接触一下,平时没事翻一翻就可以了,这样你的思维就不会被变化略少的高中数学所束缚,不过这一切的前提必须是建立让清在你的基础已经非常稳固之时,否则全都没用。可以推荐些书给你,例如蔡小雄的《更高更妙的高中数学思想与方法》,朱华伟的《高中自主招生与奥数讲义》,这里祝楼主高考如意(弱弱的补充一句:打字不容易,求给分啊)
‘伍’ 高考数学最后一题是什么类型
最后一题都是导函数的计算或证明问题,都属于难题。
‘陆’ 高考数学压轴题有哪些考向,有立体几何吗
高考数学压轴题一般是函数与不等式综合问题,立体几何一般在解答题前3题,不作压轴题
‘柒’ 高考数学最难的压轴题解题技巧
高考数学压轴题综合性比较强,一道题就会涉及很多的知识点,基本都是为那些学霸们准备的。但是,有时间就去试一试,能拿一分就多拿一分。下面是我整理的高考压轴题型以及压轴题的解题技巧。
立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。计算题主要是体积,注意将字母换位(等体积法);
线面距离用等体积法。理科还有求二面角、线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错。
圆锥曲线题,第一问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了。
第二问有直线与圆锥曲线相交时,记住“联立完事用联立”,第一步联立,根据韦达定理得出两根之和、两根之差、因一般都是交于两点,注意验证判别式>;0,设直线时注意讨论斜率是否存在。
第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2和x1x2,然后将结果代入即可,通常涉及的题型有弦长问题(代入弦长公式)、定比分点问题(根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决)、点对称问题(利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、定点问题(直线y=kx+b过定点即找出k与b的关系。
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立,任意,存在等。
1.一般题目中会有少量文字描述,所以就会涉及文字的简单翻译。
2.题目中最核心的描述为各类式子:主要为普通类型:一般涉及三次函数,指对数,分式函数,绝对值函数,个别情况会涉及三角函数,特殊类型:主要含有x1,x2,f(x1),f(x2)类型。
解题思路:文字翻译处理一般较简单,核心为式子运算变形处理,对于特定式子主要通过模板解决,重点是导数压轴题中一般式子运算变形处理策略,同时会涉及一些复杂拓展图形的认识和快速作图能力。
‘捌’ 2017年广东高考数学压轴题解题方法
高考的卷子中不论是什么科目的考试,都需要设置基础知识和提升的知识。一般会根据知识的难易程度,依次排列。需要注意的是。高考的科目考题中大部分都会是基础知识,只有一小部分是需要一些时间思考的提升。下面是我帮大家整理的2017年广东高考数学压轴题解题方法,供大家参考借鉴,希望可以帮助到有需要的朋友。
特征:
1、综合性,突显数学思想方法的运用;
2、高观点性,与高等数学知识接轨;
3、交汇性,强调各个数学分支的交汇
应对策略:
1、抓好“双基”,注意第一问常常是后续解题的基础
2、要把数学思想方法贯穿于复习圆颂过程的始终
3、掌握一些“模型题”,由此出发易得解题突破口
你说你今年的压轴题是圆锥曲线或是不等式的运用,我就给你讲下这两种题型会怎样出现在压轴题中。
一、圆锥曲线
圆锥曲线无非是大多数学生心中的梦魇,在高考中一般以高档题、压轴题出现,主要涉及直线与圆锥曲线的位置关系的判定、弦长问题、最值问题、对称问题、轨迹问题等相关综合问题,突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高。
在我看来,圆锥曲线解题的本质就是将题中的条件和提干中条件和图形中隐含的几何特征转换成灯饰或不等式,最后通过代数运算解决问题,而其中的关键是怎样转换或构造不等式。特别注意注意点差法的运用。
二、不等式证明中的放缩法
不等式的证明是高中数学中的一个难点。它可以考察学生逻辑思维能力和解决问题的能力。正如你所说,橘销郑放缩法出现的概率极大,若该题型出现在压轴题,此方法必考无疑。放缩法它可以和很多只是内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩是要注意适度,否则就不能同向传递。
一、复杂的问题简单化
就是把一个复杂的问题,分解为一系列简单的问题,把复杂的'图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,即使你最后没有算出结果,但是如果步骤正确,还是会得相应的步骤分的。在高考数学的答题过程中我们需要秉承一个理念,那就是不放过任何一个得斗旁分步骤。
二、运动的问题静止化
对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系,用代数式慢慢求解。
三、一般的问题特殊化
一有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。
四、心态问题
做题时心态是非常重要的,有的同学解答不出来时容易烦躁、紧张、出冷汗或者自暴自弃,这在高考中是最忌讳的。同学在复习备考的时候,可以在有限的时间里利用压轴题训练自己的心态,即使做不出来也要冷静、淡定。控制好时间切记花过多的时间在压轴题上,结果剪了芝麻丢了西瓜。
‘玖’ 江苏高考数学压轴题一般为何题型
一、关于小题压轴 我们认为是灵活性很强的,但首先还是关注C级考点,不过通过观察近年江苏高考不难发现,江苏几乎不拿数列和基本不等式压轴。不等式的话是较灵活的题反正不是基本不等式(13,14),关于函数仍然不多做小题压轴(10年是导函数14题),所以小题来讲分析也等于白分析,因为灵活性很强。但只说一句(说的是压轴13,14)关注C级点,多想基本方法,别指望“巧解”,再多做一做近年江苏高考题。 二、关于解答题压轴(19,20)我们认为还是函数,数列,这个就不像小题了,几乎定死的。函数:含参的,研究性质或跟据性质求范围。数列:差比条件下对数列一般性质的证明或探究。简单说这么多吧,请多指教同年,我也今年高考,一起好运!