㈠ 数学家能为数学的发展做什么贡献
伽利略(1564-02-15-1642-01-08)。意大利数学家、物理学家、天文学家,科学革命的先驱。伽利略发明了摆针和温度计,在科学上为人类作出过巨大贡献,是近代实验科学的奠基人之一。
历史上他首先在科学实验的基础上融汇贯通了数学、物理学和天文学三门知识,扩大、加深并改变了人类对物质运动和宇宙的认识。伽利略从实验中总结出自由落体定律、惯性定律和伽利略相对性原理等。从而推翻了亚里士多德物理学的许多臆断,奠定了经典力学的基础,反驳了托勒密的地心体系,有力地支持了哥白尼的日心学说 。
他以系统的实验和观察推翻了纯属思辨传统的自然观,开创了以实验事实为根据并具有严密逻辑体系的近代科学。因此被誉为“近代力学之父”、“现代科学之父”。其工作为牛顿的理论体系的建立奠定了基础。
伽利略倡导数学与实验相结合的研究方法,这种研究方法是他在科学上取得伟大成就的源泉,也是他对近代科学的最重要贡献。
㈡ 数学家欧拉的历史贡献有哪些
作为 数学 界的巨星,欧拉在很多数学研究领域都有着非常大的贡献。那么欧拉的贡献是什么?下面是我为你搜集欧拉的贡献是什么,希望对你有帮助!
欧拉的贡献是什么
首先,欧拉的贡献在于微积分方面的研究,他在整理前人研究内容的基础上,还先后发表了自己的研究文章,从中对于 函数 进行了比较系统的研究和探讨,由此发现了函数的新解释,并且给出了新的概念和定义。从此之后,欧拉的研究更多深入,并且引进了超越函数的概念,对函数学产生极大影响。
而在微分方程这一方面,欧拉的研究和贡献也是非常大的,1727年,他用一阶方程的概念来替换一类二阶方程,这是关于此类研究的系统性开拓,而在数论的研究方面,欧拉的贡献无疑在于他首次提出了二次互反律,同时还产生了着名的欧拉函数。
欧拉的贡献远远不止前面提到的几个方面,在几何领域,他对于曲线的研究也是颇有成就的,当时,欧拉关于曲面理论的研究,文章一经发表就引起很大轰动,而对于微积分方程的研究,欧拉还通过独特的理论 成功 地找到了欧拉方程,也就是极值函数所满足的方程,产生了极大的影响。
欧拉在数学领域所作出的贡献,无论从哪个方面来说都是巨大的,而他的成就和贡献还对现代的数学有着很大的作用。
欧拉的生平介绍
欧拉作为瑞士有名的数学家和 自然 科学家,他的生平是怎么样的呢?说起欧拉生平,1707年,欧拉在瑞士一个叫做巴塞尔的城市出生了,他从小接受了作为牧师的父亲的 教育 ,当时,欧拉的父亲想让他学习神学,但是欧拉本人更感 兴趣 的却是数学。13岁的时候,欧拉进入了大学读书,15岁的时候就已经大学 毕业 ,而在大学期间,他已经在数学研究方面展示出了潜力。
就在18岁的时候,欧拉毅然放弃当牧师的想法,投身到数学研究中,并且开始发表自己的文章。1727年,欧拉在当时的数学大师的推荐下,去了彼得堡的一个科学院,在颤昌那里从事相关的研究工作,后来,他担任起教授的职务。在这里,欧拉不断有新的成就出现。
说起欧拉生平,1735年,他则睁成功解决了一个天文学上的难题,产生极大反响。1741年的时候,他受到邀请担任校长职务,从那以后,在柏林开始了研究生涯。欧拉的一生都在研究几何、微分以及函数等领域知识中度过,并且直到1771年他的左孙洞岁眼已经完全失明也没有放弃研究,反而作出了很多着作,直到欧拉生命的最后一刻,都没有放弃对数学的热爱。
1783年,这位伟大的数学家和科学家去世了,当时他在俄国的彼得堡,也在这个他一生大部分时候从事数学研究的地方,结束了自己的一生,当时的欧拉正值76岁,永远与世长辞。
欧拉定理是什么样的
在当代数学及许多数学分支中都可以见到很多以欧拉命名的公式、常数和定理。在数论中,欧拉定理是一个关于同余的性质。它得名于瑞士数学家欧拉,而且该定理被大家认为是数学界中最为美妙的定理之一。实际上,欧拉定理实际是费马小定理的推广。除此之外还有平面几何中的欧拉定理以及多面体欧拉定理。在西方 经济学 体系中,欧拉定理又称为产量分配净尽定理,是指在完全竞争的条件下,如果假设长期中收益不变,那么全部产品恰好足够分配给各个要素的例子。
并且,欧拉定理指出:在市场经济中,如果产品市场以及要素市场是完全竞争的,并且厂商生产的规模薪酬不变,由此在市场均衡条件下,全部生产要素实际所取得的薪酬总量正恰好与社会所生产的总产品持平。因此该定理又叫边际生产力分配理论,而且还被称为产品分配净尽定理。正如上边所述,要素的价格是由于要素的市场供给和市场需求共同 决定 。在完全竞争的条件下,厂商和消费者都被动地接受市场形成的价格。
e^(iπ)+1=0.这个等式叫做欧拉公式,它将数学里最为重要的几个数字完整联系到了一起:两个超越数:圆周率π,自然对数的底e,两个单位:自然数的单位1和虚数单位i,以及数学里最常见的0。各位数学家们评价它是“上帝创造的公式”。
猜你喜欢:
1. 12世纪谁发明了分数线
2. 欧拉的故事有哪些
3. 欧拉有什么故事
㈢ 泰勒斯对数学的贡献是什么
巴比伦人和古埃及人积累了许多数学知识,但他们只能回答“怎么做”,却无法回答“为什么”要这么做的道理。古希腊人从阿拉伯人那里学到了这些经验,进行了精细的思考和严密的推理,才逐渐产生了现代意义上的数学科学。
第一个对数学诞生作出巨大贡献的是泰勒斯。他曾利用太阳影子计算了金字塔的高度,实际上就是利用了相似三角形的性质。他弄清了:直角彼此相等;等腰三角形的底角相等;圆被任一直径平分;如果两个三角形有一边及这边上的两个角对应相等,那么这两个三角形全等;而且证明了这些知识。这些知识现在看起来很简单,但在当时是非常了不起的。
在泰勒斯之后,以毕达哥拉斯为首的一批学者对数学作出了贡献。他们最出色的成就之一是发现了“勾股定理”,在西方被称为“毕达哥拉斯定理”。正是用了这一定理,后来导致了无理数的发现,引起了第一次数学危机。
稍晚于毕达哥拉斯的芝诺,提出了四条着名的悖论,对以后数学概念的发展产生了重要的影响。
经过泰勒斯到芝诺等人的努力,古希腊的数学有了全新的发展。欧几里德吸取其中的精华,写成了《几何原本》这本在数学史上最有名的着作。今天人们所学的平面几何学知识,都来源于这本书。
继欧几里德之后,阿基米德开创了希腊数学发展的新时期,人们称之为亚历山大时期。阿基米德在数学方面的工作,远远超越了他那个时代,被后人称为“数学的神”。他设计过一种大数体系,即使整个宇宙都填满了细小的砂粒,也可以毫不费力地把砂子的粒数数出来。他通过作边数越来越多的内接正多边形、外切正多边形,算得了圆周率的值在31071到317之间。他得到了求面积和求体积的公式,还发明了以他名字命名的螺线。
在阿基米德之后,古希腊的数学更加侧重于应用。在天文学发展的促进下,希帕恰斯、梅尼劳斯、托勒密创立了三角学。尼可马修斯写出了第一本专门的数论典籍——《算术入门》,丢番图则系统地研究了各种方程,特别是各种不定方程。这样,初等数学的各个分支——算术、数论、代数、几何、三角全部建立了起来,这意味着,由巴比伦人、古埃及人孕育的数学“婴儿”,终于在古希腊的摇篮中诞生了。
㈣ “数学之父”华罗庚,到底做出了什么贡献你知道吗
《易·系辞下》:上古结绳而治,后世圣人易以书契,百官以治,万民以察。结绳记事是古代先民在没有文字之前,创造了一种记忆法,事大,大结其绳;事小,小结其绳, 之多少,随物众寡。
根据不完全统计,数十年间,华罗庚共发表152篇重要的数学论文,9部数学着作、11本数学科普着作,从初中毕业到人民数学家,华罗庚这一生走过了一条曲折而又辉煌的人生道路。
㈤ 我国数学家在数学方面的重大贡献(至少10位)
其实你在找下就可以的
我帮你找了点.以后还是少悬赏啦
分不容易的
数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李氏恒等式”。
数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。
数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。
数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”。
数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”。
数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。
数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法”;另外还有以他命名的“吴氏公式”。
数学家王浩关于数理逻辑的一个命题被国际上定为“王氏悖论”。
数学家柯召关于卡特兰问题的研究成果被国际数学界称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被国际上称为“柯—孙猜测”。
数学家陈景润在哥德巴赫猜想研究中提出的命题被国际数学界誉为“陈氏定理”。
数学家杨乐和张广厚在函数论方面的研究成果被国际上称为“杨—张定理”。
数学家陆启铿关于常曲率流形的研究成果被国际上称为“陆氏猜想”。
数学家夏道行在泛函积分和不变测度论方面的研究成果被国际数学界称为“夏氏不等式”。
数学家姜伯驹关于尼尔森数计算的研究成果被国际上命名为“姜氏空间”;另外还有以他命名的“姜氏子群”。
数学家侯振挺关于马尔可夫过程的研究成果被国际上命名为“侯氏定理”。
数学家周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”。
数学家王戌堂关于点集拓扑学的研究成果被国际数学界誉为“王氏定理”。
㈥ 数学家的故事与杰出贡献。
一、八岁的高斯发现了数学定理
德国着名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。
长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。
这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。
“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?
高斯解释他发现的一个方法,这个方法就是古时希腊人宽液和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。
二、为了中华民族的富强 -------苏步青的故事
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。„天下兴亡,匹夫有责‟,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学握枣是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学段巧拆系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!” 这就是老一辈数学家那颗爱国的赤子之心。
三、从小立志 科学救国------ 熊庆来的故事
熊庆来(1893-1969)是云南弥勒县人,中国现代数学的先驱,为中国数学事业的发展做出了杰出贡献。 熊庆来的父亲熊国栋,精通儒学,但更喜欢新学,思想很开明,对熊庆来的影响很大。少年时的熊庆来从他父亲那里常听到有关孙中山民主革命的事情,这在幼年熊庆来的心田播下了爱国的种子。
1907年,熊庆来考入昆明的云南方言学堂,不久又升入云南高等学堂。当时满清王朝已日薄西山,各地的反清斗争风起云涌,抗捐、抗税、罢课、罢市、兵变遍及全国,清政府陷入于风雨飘摇之中。熊庆来由于参加了“收回矿山开采权”的抗法反清的示威游行而遭到学校的记过处分。现实的生活与斗争命命名熊庆来认识到:要使国家富强,必须掌握科学,科学能强国富民。
1913年,熊庆来赴欧留学。1914年,第一次世界大战爆发,他从比利时经荷兰、英国,辗转到了法国巴黎。8年间先后获得高等数学、力学及天文学等多科证书,并获得理学硕士学位。1921年,28岁的熊庆来学成归国,一心想学以致用,救民于水火。1949年6月,国民党反动政府趁熊庆来去巴黎参加国际会议的机会,解散了熊庆来苦心经营12年的云南大学。年近花甲的熊庆来怀着“壮志难酬,报国无门”的心情,决定滞留在法国继续从事函数论的研究。
“……祖国欢迎你,人民欢迎你!欢迎你回来参加社会主义建设的伟大事业……”1957年4月,周总理给熊庆来写信,动员他回国。同年6月,熊庆来在完成了函数论专着稿后,毅然启程,回到了祖国的怀抱。他表示,愿在社会主义的光芒中鞠躬尽瘁于祖国的学术建设事业。在回国后的7年中,他在国内外学术杂志上发表了近20篇具有世界水平的数学论文。还培养了杨乐、张广厚等一批数学人才,为祖国赢得了荣誉,表现了这位七旬老人热爱祖国的赤子之心。
1969年,一代宗师、着名数学家熊庆来先生与世长辞。临终之前他还表示为人民鞠躬尽瘁,死而后已。
四、数学奇才、计算机之父——冯·诺依曼
约翰·冯·诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对 孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古 希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年成为该校终身教授.1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席.
1954年夏,冯·诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.
五、数学奇才——伽罗华
1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。
伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原着研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入着名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。
青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。
伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。
六、“数学之神”——阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有着名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的着作共只有十来部,但多数是几何着作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本着作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。 《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部着作中,他还提出了着名的"阿基米德公理"。 《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一着作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论着,讲的是确定平面图形和立体图形的重心问题。 《浮体》,是流体静力学的第一部专着,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些着作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
七、数学家的故事——祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国着名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
㈦ 我国近代的数学家取得了哪些伟大的成就
1、姜立夫
姜立夫(1890—1978),数学家,数学教育家。南开大学数学系的创始人。曾任中央研究院数学所所长。
对中国现代数学教学与研究的发展有重要贡献。姜立夫的学术生涯开始于综合几何的研究。
从40年代起,姜立夫的研究课题主要是圆素与球素几何学,逐步整理出一套以二阶对称方阵作为圆的坐标,以二阶埃尔米特方阵作为球的坐标的新方法。
2、熊庆来
熊庆来(1893年9月11日—1969年2月3日),字迪之,出生于云南省红河哈尼族彝族自治州弥勒市息宰村,中国现代数学先驱,中国函数论的主要开拓者之一,以“熊氏无穷数”理论载入世界数学史册。
熊庆来主要从事函数论方面的研究工作,定义了一个“无穷级函数”,国际上称为“熊氏无穷数”。熊庆来在“函数理论”领域造诣很深。
1932年他代表中国第一次出席了瑞士苏黎世国际数学家大会,1934年,他的论文《关于无穷级整函数与亚纯函数》发表,并以此获得法国国家博士学位,成为第一个获此学位的中国人。
这篇论文中,熊庆来所定义的“无穷级函数”,国际上称为“熊氏无穷数”,被载入了世界数学史册,奠定了他在国际数学界的地位。
3、苏步青
苏步青(1902年9月23日—2003年3月17日),浙江温州平阳人,祖籍福建省泉州市,中国科学院院士,中国着名的数学家、教育家,中国微分几何学派创始人,被誉为“东方国度上灿烂的数学明星”、“东方第一几何学家”、“数学之王”。
他创建了中国微分几何学派,晚年创建开拓了计算几何新的研究方向。
他先后在仿射微分几何、射影微分几何、一般空间微分几何及射影共轭网理论等方面做出了杰出的贡献,创建了国际公认的中国微分几何学派;在70多岁高龄时,还结合解决船体数学放样的实际课题,创建和开始了计算几何的新研究方向。
苏步青的研究方向主要是微分几何。苏步青的大部分研究工作是属于仿射微分几何学和射影微分几何学方向的。
此外,他还致力于一般空间微分几何学和计算几何学的研究。他创立了国际公认的浙江大学微分几何学学派。
4、陈景润
陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。
1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1966年5月,发表了他的论文《表大偶数为一个素数及一个不超过二个素数的乘积之和》 。
论文的发表,受到世界数学界和着名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”。
5、华罗庚
华罗庚(1910.11.12—1985.6.12), 出生于江苏常州金坛区,祖籍江苏丹阳。数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。
他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。
在国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。
20世纪40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计;对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,三角和研究成果被国际数学界称为“华氏定理”。
在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。
与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。
参考资料来源:网络——苏步青
参考资料来源:网络——熊庆来
参考资料来源:网络——姜立夫
参考资料来源:网络——陈景润
参考资料来源:网络——华罗庚
㈧ 数学家有哪些 各自有什么成就
1、陈景润,1933年5月22日生于福建福州,当代数学家。1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举乎猛荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。
2、华罗庚(1910.11.12—1985.6.12), 出生于江苏常州金坛区,祖籍江苏丹阳。数学家,中国者顷燃科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。
3、祖冲之(首虚429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。 祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。
㈨ 数学家对社会的贡献
数学,一种古老而又年轻的文化.数学作为一种技术,可以直接产生经济效益.
1970年代末期,中国的科学春天来临.徐迟的报告文学《歌德巴赫猜想》风靡全国,陈景润的名字一夜之间传遍大江南北,成为中国科学复兴的英雄.他在“歌德巴赫猜想”上的成就至今人仍在世界上领先.当费马猜想于1995年宣布解决之后,21世纪数学难题中,彻底解决“歌德巴赫猜想”成为数学家面临的主要课题.陈景润从事的数论,是一门纯粹科学.数论的价值何在?一方面,在智力奥林匹克赛场上角逐,胜者为王.另一方面,世界顶尖数论专家纷纷投身密码研究,数论研究涉及国家安全以及企业机密.但是,中国的数学和公众之间存在着某种隔膜.尽管陈景润的科学精神感人至深,但是公众普遍认为,数学知识其他科学的语言,只能作为训练思维的体操.至于数学对经济建设的贡献,对社会的推动则是间接的,演不了主角,顶多是“幕后英雄”而已.进入1990年代,情况逐渐发生变化,数学技术开始在中国显示威力.一项闻名中外的科学成就又一次和数学结缘:以王选为总裁的方正集团开发了“汉字激光照排系统印刷技术”.王选,1962年毕业于北京大学数学系.他所领导的这项告别“铅与火‘的印刷术革命,其原理基于一项数学技术——“数据压缩”.目前,方正集团及其伙伴占领了汉字印刷国内市场的99%,过外市场的70%.王选成为中国“最能挣钱的科学家之一”.数学可以直接产生经济效益,又一次为事实所证明.数学对社会的贡献已从间接服务到直接干圆旅笑预,也就是说,数学的社会功能已从单纯为其他学科提供工具,发展为直接创造价值.
1940年,英国和美国为了对付橘含德国潜艇的威胁,创立了运筹学.在不增加设备的情况下,依靠数学智力运筹学可以帮助提高设备能力和使用效率.1942年,苏联的柯尔莫哥洛夫和美国的维纳分别研究火炮的自动跟踪装置,发展随机过程的预测和滤波理论,提高防空效率.1948年维纳发表着名的《控制论》.1939年起,英国的数学家图灵帮助英国情报部门破译德军密码成功.美军破译日军密码电报,击落日本的将山本五十六的座机.1944年,冯.诺伊曼创立的对策论用于太平洋战争的战术决策.美国政府组织的“应用数学小组(AMP)”,参与空中火箭发射,水下弹道,B-52轰炸机的计算等.数学家参与原子弹的研制.波兰裔数学家S.乌拉姆为氢弹研制作出了关键性贡献.1950年,冯.诺伊曼等使用电子计算机进行“数值”天气预报.1979年的诺贝尔医学奖授予美国的柯马克和英国的洪斯费尔德,褒奖他们运用数学上拉东变换原理,设计了CT层析仪.1993年,美国的数字化电视方案出世后,立即“横扫千军”,使模拟式方案变成一张废纸.支持电视数字化的是一种数学技术----小波技术,它能将庞大的数据压缩到最低限度,使得图象的数字传输成为可能.
1938年,苏联着名数学家康特罗维奇创建“线性规划”方法,可以使线性约束条件下的线性目标达到最优.1971年,康特罗维奇和美国的柯普曼共同获得诺贝尔经济学奖.西方的数理经济学已经有100多年的历史.其基本原理是一般经济均衡理论.1970年的萨缪尔森,1972年的希克斯,阿罗,1983年的德布鲁.阿罗和德布鲁都是科班出身的数学家.由于西方证券市场的发展,证券理论的研究和实践在经济学中的地位日益突出,终于发生了“华尔街革命”.1990年的诺贝尔经济学奖授予马克维奇,夏普和米勒.他们研究如何在多种证券上投资,能使收益最大.他们把收益和风险这些本来非常模糊的概念变成明确的数学概念,并导出资本资产定价模型等重要理论.1997年的诺贝尔经济学奖则授予肖尔斯和默顿,他们的工作以期权定价理论有关.1997年,国家自然科学基金会把金融数学列为优先发展的学科之一.
第一,从线性到非线性.混沌,分形,动力系统等研究进展迅速.第二,从交换到非交换.矩阵,算子的乘法都是不可交换的.第三,从1维数学到高维数学,特别4维和无穷维.第四,随机数学和确定性数学,离散和镇唤联系,局部性质和整体性质间的对立与整合.2002年的国际数学家大会已在北京召开,这是中国数学进步的新起点.愿中国数学在新世纪里更上一层楼,实现“21世纪的数学大国”的理想.