A. 简单梳理一下我国的小学数学教育的变革轨迹,从中可以发现一些什么样的特点
数与代数数与代数现行大纲这部分内容主要侧重有关数、代数式、方程、函数的运算,《标准》对此作了较大地改革:1.重视数与符号意义以及对数的感受,体会数字用来表示和交流的作用.通过探索丰富的问题情景发展运算的含义,在保持基本笔算训练的前提下,强调能够根据题目条件寻求合理、简捷的运算途径和运算方法,加强估算,引进计算器,鼓励算法多样化.2.对于应用问题:选材强调现实性、趣味性和可探索性;题材呈现形式多样化(表格颤衫、图形、漫画、对话、文字等);强调对信息材料的选择与判断(信息多余、信息不足……);解决的策略多样化;问题答案可以不唯一;淡化人为编制的应用题类型及其解题分析.3.使学生初步体会数学可以发现、描述、分析客观世界中多种多样的模式,把握事物的变化和事物间的关系;初步发展学生的符号意识,学会用符号表达现实问题中的一些基本关系,会初步进行符号运算.4.体会方程和函数是刻划现实世界,有效地表示、处理、交流和传递信息的强有力工具,是探究事物好发展规律,预测事物发展的重要手段,重视对简单现实头问题的建模过程,学会选择有效的符号运算程序和方法解决问题,重视近似解法特别是图象解法.第一学段1.增加“能进行简单的四则混合运算(两步).2.适当加强基础.3.加强综合能力的培养.第二学段1.增加“结合现实情景感受大数的意义,并进行估算;发展学生的数感;加强与现实的联系.”2.增加了“了解公倍数和最小公倍数,了解公因数和最大公因数.”3.删除“会口算百以内一位数乘、除两位数”(?教师讨论)4.将“理解等式的性质,会用等式的性质解简单的方程”改为“能理解简单的方程.”图形与几何(原称空间与图形:变“空间与图形”为“图形与几何”;重提几何直观、推理能力、运算能力、逻辑思维能力,用词更加规范,体现了课标的严肃)现行大纲这部分内迅裂容,小学主要侧重长度、面积、体积的计算,初中主要是运用逻辑证明和扩大公理化的方法呈现有关平面图形的性质,这使得学生不能将所学的几何知识与现实生活联系起来,也没有体现现代几何的发展,还往往造成不少学生因此对几何、至整个数学学习失去了兴趣和信心.为此,《标准》在重新审视几何教学目标的基础上,提出几何学习最重要的目标是使学生更好地理解自己所生存的世界,形成空茄昌腔间观念.并对传统的几何内容进行了较大幅度的改革:1.设置了“空间与图形”领域,将几何学习的视野拓宽到学生生活的空间,强调空间和图形知识的现实背景,从第一学段开始使学生接触丰富的几何世界.2.通过观察、描述、制作、从不同的角度观察物体、认识方向、制作模型等活动,发展学生的空间观念和和图形设计与推理的能力.3.突出用观察、操作、变换、坐标、推理等多方式了解现实空间和处理几何问题,体会的刻划现实生活中的应用.《标准》中还指出,逻辑证明的要求并不局限于几何内容,而应该体现在数学学习各个领域,包括代数和统计与概率等;对于几何证明的教学来说,它的目的不应当是追求证明的技巧、证明的速度和题目的难度,而应服从于使学生养成“说明有据”的态度、尊重客观事实的精神和质疑的习惯,形成证明的意识,理解证明的必要性和意义,体会证明的思想,掌握证明的基本方法等等.因此,《标准》中在强调探索图形性质的基础之上,要求证明基本图形(三角形、四边形)的基本性质,降低了对论证过程形式化和证明技巧的要求,删节去了繁难的几何证明题,旨在通过这些让学生体验逻辑证明的意义、过程,掌握基本的证明方法,同时,向学生介绍欧几里得和《几何原本》,使学生体会它们对于人类历史和思想发展中的重要作用.综上所述,《标准》大大地加强和改善了目前的几何教学.的”图形与几何”第一学段仍分为四部分,具体表示有所变动,(1)图形的认识,(2)测量,(3)图形的运动,(4)图形与位置,在探索、发现、确认、证明图形性质过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系.体现增强学生“发现和提出问题、分析和解决问题”的能力要求.“图形的运动”强调了图形的运动是研究图形性质的一种有效方法.运动也是一种基本的数学思想.第一学段(1)将能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”放在第二学段.(2)将”能在方格纸上画出简单图形的轴对称图形放在第二学段.”第二学段(1)删除“两点确定一条直线”和“两条直线确定一个点”(2)增加“通过操作,了解圆的周长与直径的比为定值.统计与概率现行大纲中只在小学高年级和初三代数中设立一章介绍有关统计初步的内容,几乎没有涉及概率内容,同时仍然采取“定义——公式——例题——习题”的体系呈现弦计初步知识,使得学生很难得体会这部分内容与现实的联系,统计与概率对决策的作用.因此,《标准》中大大增加了“统计与概率”的内容,在三个学段根据学生的认知特点,分别设置了相应的内容,结合实际问题,体现了统计与概率的基本思想:1、反映数据统计的全过程:收集和整理数据、表示数据、分析数据、作出决策、进行交流.2、体全随机观念和用样本估计总体的初步思想,将概率统计方法作为制定决策的有力手段.3、根据数据作出推理和合理的论证,并初步学会用概率统计语言进行交流.统计鼓励学生运用自己的方式呈现整理数据的结果.⑴(第一学段)不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(放在第二学段).这种变化有三个原因:①更加突出了学生对数据分析的体验,鼓励学生用自己的方式去分析数据.②早期经验的多样化可以为以后学习:“正规”的统计图表和统计量奠定比较牢固的基础.③使得统计内容在第一、二学段的要求层次更加明确.⑵加强分析图表的能力里的培养.提升“读图能力”的培养.⑶加强调查等活动的体验.(主要是小调查)在收集数据方法方面,考虑到学生年龄特征,要求学生了解测量、调查等的简单方法,不要求学生从报刊、杂志、电视等去收集资料.⑷第二学段与《标准》相比,在统计方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在第三学段)平均数易受极端数的影响(最大数与最小数的影响).⑸另外,删去“体会数据可能产生的误导”这一要求.概率(可能性,重视“随机现象”)在第一学段,去掉了对此内容的要求:第二学段只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性的描述.综合与实践“综合与实践”是一类以问题为载体,学生主动参与的学习活动.,是帮助学生积累数学活动经验,培养学生应用意识与创新意识的重要途径.针对问题的情景,学生综合所学的知识,和生活经验,独立思考或与他人合作经历发现问题和提出问题,分析问题和解决问题的全过程,感悟数学各部分内容之间\数学与生活实际之间\数学与其他学科之间的联系,加深对所教数学内容的理解.《标准》增设“联系与综合”部分的目的是让学生在各个知识领域的学习过程中,有意识地体会数学与他们的生活经验、现实社会和其他学科的联系,以及数学在人类文明发展与进步过程中的作用;体会数学知识内在的联系.同时,采用过“综合实践活动”这种新的学习形式,通过学生的自主探索与合作交流,使他们获得综合运用数学知识和方法解决实际问题、探索数学规律的能力,逐步发展对数学的整体认识.新的数学课程新技术对数学课程提出了新的要求,指出了新技术包括数学课程的目的、数学学习的内容以及教与学的方式等方面产生了巨大影响.因此,《标准》提出在第二学段引入计算器,并鼓励把计算器和计算机作为研究、解决问题的强有力的工具.这样可以免除学生做大量繁杂、重复的运算,从而在探索性、创造性的数学活动中投入的精力,解决更为广泛的现实问题.同时,在课程实施建议中强调,有条件的地区应尽可能在教学过程中使用现代教育技术,增加数学课程的技术含量,充分利用现代教育技术在增加师生互动、形象化表示数学内容、有效处理复杂的数学运算等方面的优势,去改进学生的数学学习方式、增进学生对数学的理解,最终提高数学教学的质量.对综合与实践的理解-------实践性﹑综合性﹑探索性“综合与实践”应当保证每个学期至少有一次,它可以在课堂上完成,也可以在课外或课内外相结合完成.“综合与实践”的核心是发现和提出问题,分析和解决问题,不同学段有不同的特点.第一学段:内容安排强调时实践性和趣味性.第二学段:通过应用、探索和反思,加深对所学知识的理解,通过探索、引发学生学习的兴趣和培养思考的习惯,通过交流,发展理解他人、团结互助的合作精神.启示:启示一:坚持数学课程的三维整体目标把促进学生的全面发展体现在新的教学课程标准中,形成了包括知识与技能、思维与能力、情感与态度三个基本方面的目标.启示二:以发展学生的数学思维作为课程与教学的重点之一在教师指导下自主学习和探究问题,初步学会大知识的学习和解决问题过程中进行自我评判和调控.让学生对知识进行系统的整理.初步学会对已有知识经验质疑和对问题进行多方面的分析,能进行发散性思维,能提出自己的见解(算法多样化、思考问题的策略化).初步掌握观察、操作、比较、分析、类比、归纳多种数学的思考方法和利用图表整理数据,获取信息的方法.具有抓住现实生活的本质,进行数学抽象与概括的经历与经验.懂得从特殊到一般,从一般到特殊以及转化的思维策略.启示三:把解决问题置于数学课程的核心地位在标准的修改稿中,不仅体现了解决问题的基本理念,而且在实施过程中形成自己的特色(经历探索、实践的过程).启示四:要把促进创新和落实基础知识统一起来数学学习中创新活动主要集中在发现问题、提出问题、分析问题和解决问题的过程中.在上述活动中,学生已有的知识基础占有重要作用.
B. 现代小学数学教学方法的发展呈现有哪些新的特点
进入20世纪80年代以来,伴随着整个教学领域的深入改革,小学数学教学方法也呈现出蓬勃发展的势头。广大的小学数学教师和教学研究人员,一方面对我国传统的小学数学教学方法进行大胆的完善与改造,一方面积极地引进国外先进的教学方法,使我国新的教学方法,如雨后春笋,竞相涌现。
一、小学数学新教学方法介绍
(一)发现法
发现法是由美国当代着名教育家、认知心理学家布鲁纳50年代至60年代初所倡导的一种教学方法。
1、发现法的基本含义及特点
发现法是指教师不直接把现成的知识传授给学生,而是引导学生根据教师和教科书提供的课题与材料,积极主动地思考,独立地发现相应的问题和法则的一种教学方法。
发现法与其他教学方法相比较,有以下几个特点:
(1)发现法强调学生是发现者,让学生自己去独立发现、去认识,自己求出问题的答案,而不是教师把现成的结论提供给学生,使学生成为被动的吸收者。
(2)发现法强调学生内在学习动机的作用。学生最好的学习动机莫过于他们对所学课程具有内在的兴趣。发现法符合儿童好玩、好动、好问和喜欢追根求源的心理特点,遇到新奇、复杂的问题,他们就会积极地去探索。教师在教学中充分利用这一特点,利用新奇、疑难和矛盾等引发学生的思维冲突,促使他们产生强烈的求知欲望,主动地去探究和解决问题,改变了以往传统教学法仅利用外来刺激促发学生学习的做法。
(3)发现法使教师的主导作用表现为潜在的、间接的。由于该法是让学生运用已有的知识和教师提供的各种学习材料、直观教具等,自己去观察,用头脑去分析、综合、判断、推理,亲自去发现事物的本质规律,所以在这个过程中教师的主导作用是潜在的、间接的。
2、发现法的主要优点及其局限性
发现法有如下几个主要优点。
(1)可以使学生学习的外部动机转化为内部动机,增强学习的信心。
(2)有助于培养学生解决问题的能力。由于发现法经常练习怎样解决问题,所以能使学生学会探究的方法,培养学生提出问题和解决问题的能力,以及乐于创造发明的态度。
(3)运用发现法,有助于提高学生的智慧,发挥学生的潜力,培养学生优良的思维品质。
(4)有利于学生对知识的记忆和巩固。在发现学习的过程中,学生可就已有的知识结构进行内部改组,这种改组,可以使已有的知识结构与要学习的新知识更好的联系起来,这种系统化和结构化的知识,就更加有助于学生的理解、巩固和应用。
发现法也有一定的局限性。
(1)就教学效率而言,使用发现法需要花费的时间比较多。因为学生获得知识的过程是再发现的过程,一切真理都要学生自己去获得,或者重新发现,而不是由教师简单地告诉学生,因此,教学过程必然经历一个较长时间的摸索过程。
(2)就教学内容而言,它的适应是有一定范围的。发现法比较适用于具有严格逻辑的数、理、化等学科,对于人文学科是不太适用的。就适用的学科而言,也是只适用于概念和前后有联系的概括性知识的教学,如求平均数、运算定律等。而概念的名称、符号、表示法等,仍需要由教师来讲解。
(3)就教学的对象而言,它更适用于中、高年级的学生。因为发现学习必须以一定的基础知识和经验为发现的前提条件,因此,年级越高的学生,独立探索的能力也就会越强。所以,并非所有的教学内容和教学对象都有必要和可能采用发现法教学。
3、发现法教学举例(一位数除两位数的教学)
给出一道题如39÷3。学生可先拿39个物品,每3个一份,把它们分成13份。做几个这样的题目后,可以让他们把物品10个组成一组。例如,给出这样一道题:“哈利买了4条糖果,每条有10块。他吃了1块,把剩下的每3块包成一包,分给同学们,分给了几个同学?”
学生可能有以下几种解法:
(1)每3个分成一堆,然后数出分得的堆数。
(2)从3个10中各先拿出1个,剩下的每9个分给3个同学,再把其余的也每3个分成一堆。
9+9+9+3+3+3+3=39(块)
↓↓↓↓↓↓↓
3+3+3+1+1+1+1=13(人)
(3)与(2)相似,但他们看出有4个9。
9+9+9+9+3=39(块)
↓↓↓↓↓
3+3+3+3+1=13(人)
(4)他们看出3个10正好分给10个人,剩下的每3个分成一组。
30+3+3+3=39(块)
↓ ↓↓↓
10+1+1+1=13(人)
(5)与(4)相似,但他们看出剩下的9正好分给3个人。
30+9=39(块)
↓ ↓
10+3=13(人)
在学生得出解法之后,全班进行讨论。教师对不同的算法不给出评价。再出一道题,许多学生会选用比他第一次用的更为简便的方法。教师进一步提出引导性问题,促使学生找出更为有效的计算方法,形成一般的竖式计算。
(二)尝试教学法
尝试教学法是小学数学教学方法中一种影响比较大的教学方法。它是一种具有中国特色的教学方法。尝试教学法是由常州市教育科学研究所的邱学华老师最早设计和提出的,经过在一些地区和全国逐步推广,到现在已有十多年的时间,取得了很好的教学效果,甚至在国际上也有一定的影响。
1、尝试教学法的基本内容
什么是尝试教学法?尝试教学法的基本思路就是:教学过程中,不是先由教师讲,而是让学生在上知识的基础上先来尝试练习,在尝试的过程中指导学生自学课本,引导学生讨论,在学生尝试练习的基础上,教师再进行有针对性的讲解。尝试教学法的基本程序分为五个步骤:出示尝试题;自学课本;尝试练习;学生讨论;教师讲解。
尝试教学法与普通的教学方法的根本区别就在于,改变教学过程中“先讲后练”的方式,以“先练后讲”的方式作为教学的主要形式。
尝试教学法产生的背景是:在20世纪80年代初,我国教学改革已经走上了正轨,国内有许多教学改革的实验研究。同时,也有许多国外的教学改革的经验大量地介绍进来。在这种情况下,人们开始思考如何根据我国的教学改革的实验,研究和创造具有中国特色的,既符合现代教育改革的需要,又具有较强的操作性的教学方法。邱学华老师多年来进行小学数学教学的研究,在“文革”前后进行了多项小学数学教学改革方面的调查与实验,深感研究一种新的小学数学教学法的必要性。因此,他在分析和对比国内外教学改革的经验的基础上,提出了尝试教学法的设想。他借鉴了中国古代的“启发式教学”原理、发现法和自学辅导法教学的思路,综合地分析和研究这些教学法的长处与不足,试图形成一种独特的,具有操作性和可行性的教学方法。
2、尝试教学法的教学程序和课堂教学结构
尝试教学法基本的教学程序可分为五个步骤。
(1)出示尝试题
尝试题一般是与课本上的例题相仿的题目,是课本上问题的变形。
如书上例题:1/2+1/3
尝试题:1/4+5/6
出示尝试题的目的在于激发学生的学习兴趣,使学生明确这节课所学习的内容。
(2)自学课本
在学生尝试练习,对这个问题产生了一定的兴趣之后,教师引导学生看一看书上对这个题目是怎样讲的。教师提出一些与解题思路有关的问题:如上题,“分母不同怎么办?”“为什么要通分?”
通过自学课本,学生可以知道自己对个问题认识的情况,教师也可以了解学生在学习中遇到的困难是什么。
(3)尝试练习
学生通过自学课本,对所学的内容有了一个基本了解,并且大部分学生对解答尝试题有了办法,这时,就再出尝试题让学生试一试。一般采取让好、中、差三类同学板演,其他同学同时在练习本上做的办法。
(4)学生讨论
在尝试练习时,可能有的同学做得不对,也可能出现不同的做法。可以让学生结合自己的解题方法,进行讨论。
(5)教师讲解
学生会做题,并不等于掌握了知识。教师这时可按照一定逻辑系统向学生讲解所学的内容。这种讲解是有针对性的,是在学生对所学的内容有了初步认识的基础上,在学生已经通过某种方式学会了或部分学会了解题方法时进行的讲解,更能够突出重点。
以上五个步骤是尝试教学法在进行新课时所用的,作为一节完整的课,尝试教学法的课堂教学结构包括以下六个环节:
(1)基本训练(5分钟);
(2)导入新课(2分钟);
(3)进行新课(15分钟);
(4)巩固练习(6分钟);
(5)课堂作业(10分钟);
(6)课堂小结(2分钟)。
这一教学结构的优点在于:突出了教学重点;增加了练习时间;改变了满堂灌的做法。
3、尝试教学法的优越性和局限性
其优越性表现在如下几方面。
(1)有利于培养学生的探索精神和自学能力。学生在学习的过程中,都想自己试一试,用自己的方法来解决问题。
(2)有利于提高课堂教学效率。它可以充分利用教学中的最佳时间,使学生尽快地进入新内容的学习,并以较多的时间进行尝试性和巩固性的练习。
(3)有利于大面积提高教学质量。这种教学方法具有很强的操作性,教师一般都可以掌握,并且更有利于差等生的学习。因此它可以适用于更广泛的场合,从而大面积地提高教学质量。
其局限性表现在如下几方面。
(1)需要学生具备一定的数学基础和自学能力,对年龄较小的学生不适合用这种教学方法。
(2)适合于后继课的教学,对于新的概念原理的教学不宜使用。
(3)对于操作性较强的内容不适用于运用。
4、尝试教学法应用举例
尝试教学法在数学教学中应用比较广泛。适用于许多内容的教学。下面是:“商中间有零的除法”的教学实例。(梗概)
(1)基本训练(略)
口算:
板演:645÷3
(2)导入新课
把练习题中的645改成615,来继续学习。
(3)进行新课
①出示尝试题:615÷3
②尝试练习
试试看,这道题和以前的题有些不同,能做出这道题吗?
③自学课本
④学生讨论
针对学生的三种算法进行讨论(明确其中只有第二种算法是正确的):
2 5
25
3
⑤教师讲解
(4)巩固练习
(5)课堂作业
(6)课堂小结
(三)自学辅导法
1、自学辅导法的基本含义
自学辅导法是由中国科学院心理研究所卢仲衡教授主持的“中学数学自学辅导实验”中所采用的教学方法。在中学数学教学中,它取得了很大的成功。这种方法的基本思想,对于小学数学教学也有一定影响。有人也在小学进行相似的实验研究。特别是运用自学辅导教学的基本原理进行小学数学教学的改革。
自学辅导的实验研究最早是在1958年提出并且进行实验的,开始是借鉴了西方的程序教学的原理,实行小步子、多反馈的教学原则,后来进行了改造,并命名为自学辅导法。
自学辅导法是一种在教师的指导和辅导下,以学生的自学为主的教学方法。在小学数学教学中运用自学辅导法一般是指在教师的指导下,学生通过阅读课本,获得知识与技能的教学方法。
2、自学辅导法的教学程序
自学辅导法运用心理学的原理,采取适当步子、及时反馈的原则重新编写教材,实行三个本子综合运用,即课本、练习本、答案本。运用自学辅导法,在教学中以学生的自学为主,规定了一节课中学生用于自学的时间在30~35分钟,这包括自学、自练、自检。教师用于讲解的时间一般不超过15分钟。
自学辅导法在教学中的基本步骤分为五步。
(1)提出课题。教师可以直接导入新课,也可以复习有关知识后提出课题,后一种方法更加适合小学生的学习特点。对高年级学生提出课题的同时,还应提供自学提纲,使其带着问题自学,围绕课题的中心问题边读边想,求得问题的解决。
(2)学生自学。这一步主要让学生独立阅读课本,与此同时教师进行必要的指导。教师要从实际出发,根据不同年级、不同认知水平和教材难易选用相应的方式指导自学,考题指导要提纲挈领、简明扼要。
(3)答疑解难。针对学生在自学中出现的问题,教师有针对性地进行解答,也可以启发学生进行讨论互相解答。为进一步提高学生自学能力,在答疑之后,还要以再让学生阅读课本以巩固所学的内容。
(4)整理和小结。由教师出题对学生学习效果进行检查,如发现有理解方面的问题要及时补救,还要对所学的内容进行归纳小结。小结时尽量让学生运用准确的数学语言进行概括,得出结论,逐步培养学生运用数学语言进行表达的能力。
(5)巩固和应用。根据教学内容布置课堂独立作业,目的是使学生进一步理解和巩固知识,初步形成技能。
3、对自学辅导法的评价
此法的主要优点在于:能充分调动学生学习的主动性,使学生有更多的机会独立思考,通过自学掌握知识,有利于自学能力的培养。这种教法,能在课堂上基本解决问题,大大减轻了学生课业负担。由于学生在课堂上能够及时改正作业中的错误,使得教师从作业中解放出来,将更多的时间用来备课和研究学生问题,有利于提高教学质量。此外,学生可以在课外多看其他参考书,扩大知识面,有利于学生全面发展。
自学辅导法不仅是一种教学方法,而且是教学思想、教学内容、教学方法的综合。特别是它是基于教材内容的选择与编排的一种教学方法。因此,它可以看作是一种综合的教学方法。
4、自学辅导法教学实例(比例的意义和基本性质)
具体教学过程:
(1)教师谈话
(2)准备练习
(3)进行新课
①出示例题和自学思考题
例题:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。
时间(时)
2
5
路程(千米)
80
200
从表中可以看到,这辆汽车:
第一次所行驶的路程和时间的比是 ;
第二次所行驶的路程和时间的比是 。
这两个比的比值是多少?它们有什么关系?
思考:什么是比例?组成比例需要什么条件?由这几个条件可以得到比例吗?如果把比例写成分数的形式是怎样的?比例的基本性质是什么?
②引导自学,总结法则
引导学生观察两个比例,说出比例的意义。
引导学生集体讨论:组成比例的条件。
让学生将比例转化为分数的形式。
引导学生练习,思考:比和比例的区别。
让学生认识比例各部分的名称。
引导学生通过运用加、减、乘、除不同的方法,探索比例的基本性质。
③质疑问难、精讲点拨
教师根据学生提出的问题,在解释疑惑的基础上,指出比例的基本性质:在比例里,两外项之积等于两内项之积,这叫做比例的基本性质。
(4)课堂练习
(四)“探究—研讨”法
“探究—研讨”法是美国的一位教学法专家兰·本达(Lan Benda)教授提出来的。在美国有一定的影响。80年代初介绍到我国。在理科教学和数学教学中都有广泛的应用。
1、“探究—研讨”法的基本内容
“探究—研讨”法的基本思路是把教学分为两个大的环节,即“探究”和“研讨”。
第一个环节“探究”是指在教师的指导下,学生自己去探索。教师为学生提供一定的问题情景和必要的操作材料,让学生自己通过操作、摆弄,研究问题中各种因素或数量的关系。教师在教学活动的过程中,给予适当的指导。
在探究过程中,为学生提供有结构的材料是一个重要的因素。教师应当结合教学的内容,为学生选择充分的学习和研究的材料。如,彩色木条、几何拼板等。
第二环节“研讨”是给学生充分发表自己意见的机会。学生在前一个阶段,对所研究的问题都有一定的认识。在这个阶段,教师组织学生,对自己所看到的、想到的发表意见,充分利用语言的交流,使学生了解更多的信息。并且在研讨的过程中,可以互相启发,对所研究的问题有更全面和深刻的认识。最后由师生共同找出所学习问题的规律或结论。
在具体的教学过程中,可以不受这两个环节的限制,灵活地组织和运用。
2、“探究—研讨”法的主要特点
“探究—研讨”法有以下几个主要特点。
一是能充分发挥学生的主动性和创造性。
二是教师的主导作用体现在选择恰当的材料和设计有利于学生探究的问题情境中。
三是形成一种多向交流的课堂教学气氛。
3、“探究—研讨”法的应用举例(求平均数问题)
先把全班学生分成若干个小组,每组四个人。
量出每个学生的身高,并根据测量的身高剪下一张纸条。教师提出,“怎样知道四个人连起来一共有多高?”“四个人平均有多高?”
然后教师说明什么是平均数。并提出“如何求出全班同学的平均身高?”“怎样表示出这个平均身高?”学生说出可以把全班的身高加起来,然后再用总人数去除。接着学生把表示每一个人身高的纸条贴在墙上钉的一张纸上,在平均数的地方画一条线。发现有些在线的下方,有些在线的上方。并分别用“-”和“+”来表示。学生把高出来的部分剪下来,恰好可以补上低下去的那一部分。学生感到非常兴奋。
接下来又有同学提出了计算平均数的简便方法。找出最矮的同学的身高。把全班同学高出这个数字的值加起来,再除以全班总人数,再加上最矮的同学的身高,就是全班的平均身高。
还有的同学提出了随便找一个标准线,与这个标准线进行比较计算平均身高的简便方法。
二、小学数学教学方法改革的特点分析
过去,多数人认为学生课堂上学习的数学知识主要是指数学事实(如概念、公式、法则、算理等等),但随着主体性教育理论的发展,随着数学教育研究的不断深入,随着人们对学校数学教育本质的深入反思,数学理论与实践工作者逐渐认识到:学样数学主要是“活动的、操作的”数学,而不是形式化的数学。“学生应经历数学化,而非数学;抽象化,而非抽象;步骤化,而非步骤;形式化,而非形式;算法化,而非算法;语言表述,而非语言”的数学学习过程。因此,课堂里学习的数学认识不仅包括数学事实,而且包括数学活动经验。新授课的教学不应再是以往以教师系统传授教材内容为主的单向教学模式,而是“师生之间、学生之间交往互动与共同发展的过程。数学教学应紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,以及学好数学的愿望。教师是学生数学活动的组织者、引导者与合作者;要根据学生的具体情况,对教材进行再加工,有创造地设计教学过程;要正确认识学生个体差异,因材施教,使每个学生都在原有的基础上得到发展;要让学生获得成功的体验,树立学好数学的自信心。”伴随着新的数学课程改革的理念,以及哲学、政治、科技、文化等方面的发展。现代教学方法的发展呈现了新的特点。
第一,以充分调动学生的学习主动性与发挥教师的主导作用相结合为基本特征,力求教与学的最佳结合。以赫尔巴特(J.F.Herbert)为代表的传统的“三中心”,强调教师的绝对权威和严格的纪律,把学生当作盛装知识的容器;而以杜威(J.Dewey)为代表的“新三中心”,将学生比作太阳,把教师视为行星,把儿童独立学习的可能绝对化,否定了教师的主导作用。我们的教学方法避免了这两种极端,将学生主体作用与教师主导作用有机结合起来,把这一教学的主要矛盾视为具有动态性、转换性、发展性和层次性的对立统一体。在教学过程中,教师能够引导学生独立思考与合作交流。对于情景问题,教师和学生有不同的认知准备,他们的想法也会彼此不同。通过生生之间、师生之间的交流能够起到相互促进的作用。因此教师能够将全班上课与小组合作学习有效地结合起来,鼓励学生在小组内提出并解释他们自己的想法,通过小组交流或全班交流,学会数学地交流和交流地学习数学,以发展学生的数学思考力、语言对思维的表达能力和对自己学习的责任感。
第二,通过生动、有趣的学习情境,激发学生的学习动机,启发学生动脑、动口、动手,引导学生探索发现。教师充分利用学生的生活经验、知识背景,设计生动的、学生感兴趣的学习情境,让学生通过观察、操作、猜测、交流、反思等活动,逐步体会数学知识的产生、形成与发展的过程,感受数学的力量,体会数学的美妙,同时掌握必要的基础知识与基本技能。即在“做数学”的过程中学习数学。
第三,注重照顾学生的个别差异,鼓励学习方法和解题策略多样化。鼓励解决问题策略的多样化,是因材施教的有效途径。如计算教学,可以鼓励学生运用已有的知识背景,探求计算结果,而不宜教师首先示范,讲解笔算法则和算理,限制学生思维。教师通过先出示带有一定现实意义的问题情境,让学生先估算,然后独立计算?在此基础上进行小组交流,感受解决问题策略的多样化与灵活性。
第四,着重研究学生,特别注重学习方法的研究和指导,让学生在学会的过程中,逐步达到会学。学习方法是学生获得知识,形成能力过程中所采取的、基本活动方式和基本思想方法,学法的研究和指导,是保证现代教法实施的必要环节,是提高教学质量的关键。
第五,在使学生获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能外,更加重视培养学生的态度、情感、价值观。态度、情感、价值观作为学习的内驱力,在学习中发挥着重要的作用。现代小学数学教学方法充分地考虑到这一点,注重学生学习兴趣的培养,学习动机的激发,强调师生双方的感情交流,充分利用情感的作用去开启学生认知结构的大门。
第六,强调多种教学方法的交叉使用和互相配合。重视采用现代化教学手段。传统的教学方法往往采用固定的教学方法,形成一套模式。随着现代教学论的发展、教学方法的增多以及对教学方法本质的深入研究,广大教育工作者逐渐认识到教学方法是多种多样的,没有一种万能的教学方法。教学方法因数学课题、所教的儿童以及教师的风格而有所不同;教学方法也不是“单一的”,可以有不同的组合。另外,重视现代化教学手段的运用,把形、声、光结合起来,生动、形象、鲜明,感染力强,抽象的数学概念和原理,通过结合形象的画面来讲解,可以更好地吸引学生的注意力,提高学习兴趣。加深对教材的理解和记忆。在我国开展的CAI、微格教学。都是应用现代技术手段的直接产物,现代教学方法的发展。必须考虑到现代化教学技术手段的作用和地位。考虑到现代技术设备的引入对常规教学方法的冲击和变革,找到其中的组合点和发展方向,使其为教学方法服务。
以上是现代教学方法呈现的新特点。但纵观各种小学教学方法。还存在着一些问题:一些教学方法的命名欠推敲,主观随意性很大,不够科学;一些教学方法的“内涵”和“外延”不清;一些教学方法存在着将某种教学方法凝固化、模式化的倾向;有些教学方法缺乏教学理论依据;等等。这些问题都需要很好地加以解决。否则不仅有碍教学质量的提高,也有碍于教学方法研究的深入开展。
C. 小学数学新课程标准有什么特点
数与代数
数与代数现行大纲这部分内容主要侧重有关数、代数式、方程、函数的运算,《标准》对此作了较大地改革:
1.重视数与符号意义以及对数的感受,体会数字用来表示和交流的作用.通过探索丰富的问题情景发展运算的含义,在保持基本笔算训练的前提下,强调能够根据题目条件寻求合理、简捷的运算途径和运算方法,加强估算,引进计算器,鼓励算法多样化.
2.对于应用问题:选材强调现实性、趣味性和可探索性;题材呈现形式多样化(表格、图形、漫画、对话、文字等);强调对信息材料的选择与判断(信息多余、信息不足……);解决的策略多样化;问题答案可以不唯一;淡化人为编制的应用题类型及其解题分析.
3.使学生初步体会数学可以发现、描述、分析客观世界中多种多样的模式,把握事物的变化和事物间的关系;初步发展学生的符号意识,学会用符号表达现实问题中的一些基本关系,会初步进行符号运算.
4.体会方程和函数是刻划现实世界,有效地表示、处理、交流和传递信息的强有力工具,是探究事物好发展规律,预测事物发展的重要手段,重视对简单现实头问题的建模过程,学会选择有效的符号运算程序和方法解决问题,重视近似解法特别是图象解法.
第一学段
1.增加“能进行简单的四则混合运算(两步).
2.适当加强基础.
3.加强综合能力的培养.
第二学段
1.增加“结合现实情景感受大数的意义,并进行估算;发展学生的数感;加强与现实的联系.”
2.增加了“了解公倍数和最小公倍数,了解公因数和最大公因数.”
3.删除“会口算百以内一位数乘、除两位数”(?教师讨论)
4.将“理解等式的性质,会用等式的性质解简单的方程”改为“能理解简单的方程.”
图形与几何
(原称空间与图形:变“空间与图形”为“图形与几何”;重提几何直观、推理能力、运算能力、逻辑思维能力,用词更加规范,体现了课标的严肃)
现行大纲这部分内容,小学主要侧重长度、面积、体积的计算,初中主要是运用逻辑证明和扩大公理化的方法呈现有关平面图形的性质,这使得学生不能将所学的几何知识与现实生活联系起来,也没有体现现代几何的发展,还往往造成不少学生因此对几何、至整个数学学习失去了兴趣和信心.为此,《标准》在重新审视几何教学目标的基础上,提出几何学习最重要的目标是使学生更好地理解自己所生存的世界,形成空间观念.并对传统的几何内容进行了较大幅度的改革:
1.设置了“空间与图形”领域,将几何学习的视野拓宽到学生生活的空间,强调空间和图形知识的现实背景,从第一学段开始使学生接触丰富的几何世界.
2.通过观察、描述、制作、从不同的角度观察物体、认识方向、制作模型等活动,发展学生的空间观念和和图形设计与推理的能力.
3.突出用观察、操作、变换、坐标、推理等多方式了解现实空间和处理几何问题,体会更多的刻划现实生活中的应用.
《标准》中还指出,逻辑证明的要求并不局限于几何内容,而应该体现在数学学习各个领域,包括代数和统计与概率等;对于几何证明的教学来说,它的目的不应当是追求证明的技巧、证明的速度和题目的难度,而应服从于使学生养成“说明有据”的态度、尊重客观事实的精神和质疑的习惯,形成证明的意识,理解证明的必要性和意义,体会证明的思想,掌握证明的基本方法等等.因此,《标准》中在强调探索图形性质的基础之上,要求证明基本图形(三角形、四边形)的基本性质,降低了对论证过程形式化和证明技巧的要求,删节去了繁难的几何证明题,旨在通过这些让学生体验逻辑证明的意义、过程,掌握基本的证明方法,同时,向学生介绍欧几里得和《几何原本》,使学生体会它们对于人类历史和思想发展中的重要作用.综上所述,《标准》大大地加强和改善了目前的几何教学.
<标准>的”图形与几何”第一学段仍分为四部分,具体表示有所变动,(1)图形的认识,(2)测量,(3)图形的运动,(4)图形与位置,
在探索、发现、确认、证明图形性质过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系.
体现增强学生“发现和提出问题、分析和解决问题”的能力要求.
“图形的运动”强调了图形的运动是研究图形性质的一种有效方法.
运动也是一种基本的数学思想.
第一学段
(1)将能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”放在第二学段.
(2)将”能在方格纸上画出简单图形的轴对称图形放在第二学段.”
第二学段
(1)删除“两点确定一条直线”和“两条直线确定一个点”
(2)增加“通过操作,了解圆的周长与直径的比为定值.
统计与概率
现行大纲中只在小学高年级和初三代数中设立一章介绍有关统计初步的内容,几乎没有涉及概率内容,同时仍然采取“定义——公式——例题——习题”的体系呈现弦计初步知识,使得学生很难得体会这部分内容与现实的联系,统计与概率对决策的作用.因此,《标准》中大大增加了“统计与概率”的内容,在三个学段根据学生的认知特点,分别设置了相应的内容,结合实际问题,体现了统计与概率的基本思想:1、反映数据统计的全过程:收集和整理数据、表示数据、分析数据、作出决策、进行交流.2、体全随机观念和用样本估计总体的初步思想,将概率统计方法作为制定决策的有力手段.3、根据数据作出推理和合理的论证,并初步学会用概率统计语言进行交流.
统计
鼓励学生运用自己的方式呈现整理数据的结果.
⑴(第一学段)不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(放在第二学段).
这种变化有三个原因:
① 更加突出了学生对数据分析的体验,鼓励学生用自己的方式去分析数据.
② 早期经验的多样化可以为以后学习:“正规”的统计图表和统计量奠定比较牢固的基础.
③ 使得统计内容在第一、二学段的要求层次更加明确.
⑵ 加强分析图表的能力里的培养.
提升“读图能力”的培养.
⑶ 加强调查等活动的体验.(主要是小调查)
在收集数据方法方面,考虑到学生年龄特征,要求学生了解测量、调查等的简单方法,不要求学生从报刊、杂志、电视等去收集资料.
⑷ 第二学段与《标准》相比,在统计方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在第三学段)平均数易受极端数的影响(最大数与最小数的影响).
⑸ 另外,删去“体会数据可能产生的误导”这一要求.
概率(可能性,重视“随机现象”)
在第一学段,去掉了<标准>对此内容的要求:第二学段只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性的描述.
综合与实践
“综合与实践”是一类以问题为载体,学生主动参与的学习活动.,是帮助学生积累数学活动经验,培养学生应用意识与创新意识的重要途径.
针对问题的情景,学生综合所学的知识,和生活经验,独立思考或与他人合作经历发现问题和提出问题,分析问题和解决问题的全过程,感悟数学各部分内容之间\数学与生活实际之间\数学与其他学科之间的联系,加深对所教数学内容的理解.
《标准》增设“联系与综合”部分的目的是让学生在各个知识领域的学习过程中,有意识地体会数学与他们的生活经验、现实社会和其他学科的联系,以及数学在人类文明发展与进步过程中的作用;体会数学知识内在的联系.同时,采用过“综合实践活动”这种新的学习形式,通过学生的自主探索与合作交流,使他们获得综合运用数学知识和方法解决实际问题、探索数学规律的能力,逐步发展对数学的整体认识.
新的数学课程新技术对数学课程提出了新的要求,指出了新技术包括数学课程的目的、数学学习的内容以及教与学的方式等方面产生了巨大影响.因此,《标准》提出在第二学段引入计算器,并鼓励把计算器和计算机作为研究、解决问题的强有力的工具.这样可以免除学生做大量繁杂、重复的运算,从而在探索性、创造性的数学活动中投入更多的精力,解决更为广泛的现实问题.
同时,在课程实施建议中强调,有条件的地区应尽可能在教学过程中使用现代教育技术,增加数学课程的技术含量,充分利用现代教育技术在增加师生互动、形象化表示数学内容、有效处理复杂的数学运算等方面的优势,去改进学生的数学学习方式、增进学生对数学的理解,最终提高数学教学的质量.
对综合与实践的理解-------实践性﹑综合性﹑探索性
“综合与实践”应当保证每个学期至少有一次,它可以在课堂上完成,也可以在课外或课内外相结合完成.
“综合与实践”的核心是发现和提出问题,分析和解决问题,不同学段有不同的特点.
第一学段:内容安排强调时实践性和趣味性.
第二学段:
通过应用、探索和反思,加深对所学知识的理解,通过探索、引发学生学习的兴趣和培养思考的习惯,通过交流,发展理解他人、团结互助的合作精神.
启示:
启示一:坚持数学课程的三维整体目标
把促进学生的全面发展体现在新的教学课程标准中,形成了包括知识与技能、思维与能力、情感与态度 三个基本方面的目标.
启示二:以发展学生的数学思维作为课程与教学的重点之一
在教师指导下自主学习和探究问题,初步学会大知识的学习和解决问题过程中进行自我评判和调控.
让学生对知识进行系统的整理.
初步学会对已有知识经验质疑和对问题进行多方面的分析,能进行发散性思维,能提出自己的见解(算法多样化、思考问题的策略化).
初步掌握观察、操作、比较、分析、类比、归纳多种数学的思考方法和利用图表整理数据,获取信息的方法.
具有抓住现实生活的本质,进行数学抽象与概括的经历与经验.
懂得从特殊到一般,从一般到特殊以及转化的思维策略.
启示三:把解决问题置于数学课程的核心地位
在标准的修改稿中,不仅体现了解决问题的基本理念,而且在实施过程中形成自己的特色(经历探索、实践的过程).
启示四:要把促进创新和落实基础知识统一起来
数学学习中创新活动主要集中在发现问题、提出问题、分析问题和解决问题的过程中.
在上述活动中,学生已有的知识基础占有重要作用.
D. 我国传统小学数学课程的特征
1.学术中心的课程开发2.学科取向的课程组织3.螺旋式的课程结构3.笔纸考试为主的学业评价
E. 小学数学的主要特征是什么
小学数学的主要特征如下:
知识点的基础性:小学数学是数学学科体系中的一部分,是其他学科的基础。小学数学主要包含数与运算、代数、几何、数据分析等方面的知识,打下了学生今后接触高等数学的基础。
重视实践应用:小学数学强调数学知识与实际生活的联系,注重将数学知识与实践相结合,通过习题、实例、探究等多种方式激发学生的学习兴趣,并帮助学生养成思考和解决问题的能力。
知识难度渐进:小学数学课程设计中各个年级之间难度逐渐加深,为了保证学生逐步掌握知识和技能,小学数学教材内容按照难度递进的顺序进行设置。
注重启发性和多样性:小学数学教学在注重知识传授的同时,鼓励学生自主思考、发散思维、提高创造性,培养学生批判性思维,激发学生学习数学及其他学科的兴趣。
教学重视体验性和情感色彩:在小学数学课堂上,老师们会通过游戏、竞赛、情景教学等方式,培养学生对数学孙迹的兴趣和好奇心,为孩子们创造愉悦的数学学习气氛。
总之,小学数学的主要特征是强调数学知识与实践明链的联系,则槐并知识难度由易到难逐渐递进,注重启发性和多样性的教学方式,同时也注重体验性和情感色彩的体验教育。
F. 我国传统小学数学课程开发的特征
明确学习小学蚂局数学教学论的意义闷耐让和方法。传统小学数学课程开发的特征是,明确学习小学数学教学论的意义和方法。小学数学课程与教学论就是亩卖以在小学数学课程与教学这一领域内的事物作为它研究的对象,以求发现它内在的结构,得出客观的规律,数学的产生是以实际问题为起点的。
G. 小学数学学科内容的呈现具有什么的特征
小学数学学科内容的呈现具有直观性的特征。
【原题】小学数学学科内容的呈现具有()的特征。
A、系统性。
B、直观性。
C、精确性。
D、完整性。
【正确答案】B。
当前我国小学数学教学方式的特征:
1、体现价值的主体性,为使数学课程内容能有效促进学生学习,首先要努力确立学生在数学教学的主体地位。
2、体现知识的现实性,小学数学课程内容的组织应当从儿童现实生活出发。
3、体现学习的探究性,内容的不同呈现方式将在很大程度上决定着不同的学习方式,课程内容应为学生的主动探索与发展提供空间与机会。
4、体现经历的体验性,应注重儿童的数学体验,不断激发儿童学习数学的兴趣和愿望。
5、体现过程的开放性,内容的呈现除了要有一定的生成性的空间外,还应注意留有多多样性和创造性空间。
6、体现呈现多样性,不同的内容对应不同的教学方式,教材的不同应呈现给学生不同的任务与情境。