⑴ 勾股定理怎么算
勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。例:a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。由勾股定理得,a²+b²=c²→3²+4²=c²,即:9+16=25=c²,c=5。所以我们可以利用勾股定理计算出c的边长为5。
勾股定理又称商高定理、毕达哥拉斯定理、毕氏定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平卜兆猜方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一。
勾股定理的逆定理:
勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:
如果a²+b²=c²,则△ABC是直角三角形。
如果a²+b²>c²,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)型型。
如果a²+b²<猜慧c²,则△ABC是钝角三角形。
⑵ 数学勾股定理公式是什么
勾股定理公式
1、基本公式
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a²+b²=c²。
2、完全公式
a=m,b=(m²/k-k)/2,c=(m²/k+k)/2其中m≥3
(1)当m确定为任意一个≥3的奇数时,k={1,m²的所有小于m的因子}
(2)当m确定为任意一个≥4的偶数时,k={m²/2的所有小于m的偶数因子}
3、常用公式
(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。
(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n²+2n,2n²+2n+1(n是正整数)。
(3)(8,15,17),(12,35,37)……2²*(n+1),[2(n+1)]²-1,[2(n+1)]²+1(n是正整数)。
(4)m²-n²,2mn,m²+n²(m、n均是正整数,m>n)。
(2)数学怎么解勾股定理扩展阅读:
勾股数组
勾股数组是满足勾股定理a2+b2=c2的正整数组(a,b,c),其中的a,b,c称为勾股数。例如(3,4,5)就是升燃一组勾股数组。
任意一告春组勾股数(a,b,c)可以表示为如下形式:a=k(m²+n²),b=2kmn,c=k(m²+n²),其中k,m,n均为正整数,且m>n。
3勾股定理的定理用途
已知直角三角形两边求解第三边,袜笑耐或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。
⑶ 勾股定理怎么算。是什么公式
勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
(如下图所示,即a² + b² = c²)
例子:
以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。
由勾股定理得,a + b = c → 3 +4 = c
即,9 + 16 = 25 = c²
c =√25 = 5
所以我们可以利用勾股定理计算出c的边长为5。
勾股定理的逆定理:
勾股定理的逆定理是判差肆断三角形为钝角、锐角或直角散神的一个简单的方法,其中AB=c为最长边:
如果a² + b² = c²,则△ABC是直角三角形。
如果a² + b² > c²,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。
如果a² + b² < c²,则△ABC是钝角三角形。虚掘轿
⑷ 初中数学勾股定理怎么算
勾股定理是中考数学的重点考查内容,对今后几何的学习也具有举足轻重的作用。下面整理了数学勾股定理的计算,希望对你有所帮助。
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。例:a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边搜衫长。
由勾股定理得,a²+b²=c²扒漏伏→3²+4²=c²,即:9+16=25=c²,c=√25=5。所以我们可以利用勾股定理计算出c的边长为5。
勾股定理是一个基本的几何定理,指直春携角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
1.能够构成直角三角形的三边长的三个正整数称为勾股数,即中,a,b,c为正整数时,称a,b,c为一组勾股数。
2.记住常见的勾股数可以提高解题速度,如3、4、5;6、8、10;5、12、13;7、24、25等。
3.用含字母的代数式表示n组勾股数:(n为正整数);(n为正整数);(m>n,m,n为正整数)
⑸ 数学中的勾股定理是怎么讲
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”.
勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何搭薯定理,早在中国商代就由商高发现.据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”.
勾股定理指出:
直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方.
也就是说,
设直角三角形两直角边为a和b,斜边为c,那麽
a2 + b2 = c2
勾股定理现发现约有400种证悄档明方法,是数学定理中证明方法最多的定理之一.
勾股数组
满足勾股定理方程a2 + b2 = c2的正整数组(a,b,c).例如(3,4,5)就是一组勾股数组.
由于方程中含有3个未知数,故勾股数组有无数多组.
推广
如果将直角三角形的斜边看作二维平面上的向量,将知运者两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义.即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和.
⑹ 勾股定理怎么计算
勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是: a^2+b^2=c^2。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理唤漏宽之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
(6)数学怎么解勾股定理扩展阅读:
勾股定理简介:
勾股定理是一个基本的几何定理,指直角三角形搜郑的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形和亮结合的纽带之一。
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
网络勾股定理
⑺ 勾股定理是怎么解题的
⑴勾股定理揭示了直角△三边的神返关系:a²+b²=c²,已知任意两边可以求得第三边.
⑵勾股定理逆定理:已知△三边满足:a²+b²=c²,则这毁扰个△就是直角△,
其中c边所对的角=90°,然后得到余下两纤瞎旦个角互余.
⑻ 勾股定理的解法
勾股定理的解法以ab为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。
勾股定理的意义:
1、勾股定理的证明是论证几何的发端。
2、勾股定理是历史上第一个把数与形联系起来困丛的定理,即它是第一个把几何与代数联系起来的定理。
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值、这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为掘尺竖“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用、1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由着名数学家选出的,勾股定理是其中之首。
⑼ 勾股定理的解题格式
勾股定理没有固定的解题格式。
这里需要理解勾股定理中a、b、c的含义,a、b分别表示直角三角形的两条直角边,c表示直角三角形的斜边,勾股定理的内容为:两个直角边边长的平方加起来等于斜边长的平方。
这里的a、b、c只是为了书写方便而采取的公式化处理,实际应用中可直接根据定义进行计算。
(9)数学怎么解勾股定理扩展阅读:
中国勾股定理的发展:
公元前十一世纪,周朝数局梁老学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”
意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘渣唯徽注中亦证明了勾股定理。桐升
在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。