⑴ 数学中的Q表示什么数
有理数
整数用Z
自然数用N
实数用R
正整数用N+ 或N*
负整数用N-
有理数用Q
0有多种定义,这里只举最为常见的几种。(楼上列举了许多是0的性质,但一般不作为定义)
一、自然数0的定义及其扩充。
1、根据皮亚诺(Peano)自然数公理体系,0就是自然数中首先出现的数。皮亚诺公理1就是:0属于自然数集。
2、自然数集的定义也可以以1为首先出现的自然数,那么公理1成为:1属于自然数集。这时0并不属于自然数集。相应地,0是作为自然数的扩充出现的。可以定义“扩大了的自然数集”,即定义0是任何两个相等自然数的差(当然先已经定义了减法),也可以用后面代数学中0的一般定义,将0并入这个扩大了的自然数集中。
3、整数、有理数、实数、复数中的0,都来源于自然数集中的0。在数集的扩张理论中,较小的数集都是以较大数集的序对或序列的一个等价类的形式嵌入较大数集的。比如把任意两个相同自然数的序对的等价类定义为整数(涵义就是这两个自然数的差),其中两个相同的自然数构成的序对的等价类就是0。
4、在皮亚诺公理中,只是抽象地定义了自然数。也可以用构造的方法构成集合论中的自然数。这样,自然数0被等同于空集,而1就是{空集},2就是{空集,{空集}},等等。
二、一般代数理论中的0。
在一般代数结构中,如果定义了加法运算(一般加法是可交换的),那么则定义0就是满足集中任何元素与之相加都仍得该元素性质的元素(也就是x+0=x这一性质)。如任何一个域中都有0元素,实数域中的0也可以这样定义。
如果一个代数结构没有定义加法,只定义了乘法,有时也可以说满足集中任何元素与之相乘都仍得0性质的元素(也就是0*x=0或x*0=0)。由于这里乘法没有交换律,所以有“左0元”和“右0元”之分。如数域K上N阶方阵关于乘法构成一个群,就可以说它有左、右0元。
顺变提一下,布尔(Boolean)代数中0是另一种符号,遵循的又是逻辑运算的法则了。
附:皮亚诺自然数公理(也就是自然数的公理化定义)
PA1:零是个自然数.
PA2:每个自然数都有一个后继(也是个自然数).
PA3:零不是任何自然数的后继.
PA4:不同的自然数有不同的后继.
PA5:(归纳公理)设由自然数组成的某个集含有零,且每当该集含有某个自然数时便也同时含有这个数的后继,那么该集定含有全部自然数.
参考资料:汪芳庭,数学基础.潘承洞,潘承彪,初等数论.蓝以中,高等代数简明教程,抽象代数复明教程.范德瓦尔登,代数学
⑵ 数学q是什么意思
Q是有理数集,但Q并不表示有理数,有理数集与有理数是两个不同的概念。
有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
有理数命名由来
“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学着作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
⑶ 数学中的Q表示什么意思
数学中的Q表示的是:有理数集,用大写黑正体符号Q代表。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
。
⑷ 数学q是什么意思
Q是有理数集,但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学着作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
⑸ q是什么数
q是有理数集合。有理数集可以用大写黑正体符号q代表。但q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
⑹ 数学里的Q代表什么数集
数学里的Q代表有理数集合。
在数学中,常使用大写的字母“Q”表示有理数组成的合集,这是数学中的常用规定,是为了在数学计算中方便书写而设定的。
常用的有理数集合经常在字母前后增加“+”和“-”分别表示正有理数集合和负有理数集合。
(6)数学q表示什么扩展阅读:
集合的特性
1、确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现 。
2、互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性:一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
⑺ 数学里的Q代表什么数集
Q表示【有理数集 】
Q+或Q+表示正有理数集。
Q-或Q-表示负有理数集。
有理数的英文是: Rational number
['ræʃənl'nʌmbə],但不能再用R表示了。由于任何一个有理数都是两个整数之比的结果(商),而商的英文是quotient
['kwəuʃnt],所以就用Q表示了。
⑻ 数学里Q是代表什么
数学里的Q代表有理数集即全体有理数组成的集合。
1、所有正整数组成的集合称为正整数集,记作N*,Z+或N+。
2、所有负整数组成的集合称为负整数集,记作Z-。
3、全体非负整数组成的集合称为非负整数集(或自然数集),记作N。
4、全体整数组成的集合称为整数集,记作Z。
5、全体实数组成的集合称为实数集,记作R。
概念
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S
⑼ 数学q是什么意思 数学符号都有哪些
数学符号的发明和使用比数字晚,但是数量多得多。初中阶段经常使用的就有至少20多个。它们都有一段有趣的经历。我整理了一些重要的数学符号。
Q表示的意义是:有理数集。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数,分数。
实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。
18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
以上是我整理的一些数学符号,希望能帮到你。