⑴ 四年级下册数学第三单元思维导图怎么画
四年级下册数学第三单元《运算定律》的知识整理与归纳,把第三单元教学的加法运算定律、乘法运算定律和运算定律的应用画在图框里面。
首先要画上一个大大的长方形图案,再在它的四边分别添加一条直线和一个小的长方形文字框。在小长方形文字框外侧继续添加椭圆形或者是圆形的文字框,这里同学们也可以根据自己的需求来调整文字框的掘好数量。
思维导图的含义:
思维导图的建立有利于人们对其所思考的问题进行全方位和系统的描述与分析,非常有助于人们对所研究的问题进行深刻的和富有创造性的思考,从而有利于找到解决问题的关键因素或关键环节。画思维导图也有利于记忆,在自己脑海里形成一颗思维导图树,容易记忆。
对于抽象思维能力较差的学生,“图像记忆”的确可以帮助学生提高“把知识记住”的效率,但却无法加深学生对知识的理解,属于一种浅层的学习。
⑵ 四年级下册数学书第三单元在第几页
在第17页到第32页。
四年级数学下册第三单元内容是运算定律,分为加法运算定律和乘法运算定律。从第17页开始,到第31页结束。
四年级数学下册一共有10个单元,主要教学内容是四则运算,小数的意义和性质,三角形和圆形的特性,平均数和条形统计等。
⑶ 四年级数学下册知识点
第一单元知识点(四则运算)
1. 在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)
2. 在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)
3. 算式里有括号,先算括号里面的,在算括号外面的。
4. 加法、减法、乘法和除法统称四则运算。
5. 一个数加上0还得原数,一个数减去0也得原数。
6. 被减数等于减数,差是0。
7. 一个数和零相乘,仍得0。
8. 0除以一个非0的数,还得0。
9. 0不能作除数。
10. 在解决问题时,如果列综合算式,必须用脱式计算。
11. 任何数除以0都得0。(×)因为0不能做除数。
第二单元知识点(观察物体)
1. 如何确定物体所在的位置?
(1)明确方向。
(2)明确距离。
2.根据方向和距离来确定物体的位置。
3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。
4.平面图形的一般画法:
(1)先确定某建筑物的方向。
(2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)
(3)最后确定距离。
5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。
第三单元知识点(运算定律)
1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。
用字母表示为:a+b=b+a
2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)
3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。
用字母表示为:a×b=b×a
4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。
用字母表示为:(a×b) ×c=a×(b×c)
5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c
6. 类似于乘法分配律的简便公式;
(a-b)×c=a×c-b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)
8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+c a+(b-c)=a+b-c
括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”, “-”变“+”。 用字母表示为:a-(b+c)=a-b-c a-(b-c)=a-b+c
9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)
10. 在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:
a×(b×c)=a×b×c a×(b÷c)=a×b÷c
括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
12. 另两种简便方法:
(1) 把一个因数改写成两个一位数相乘的形式。
(2) 把一个因数改写成两个数相除的形式,然后变成乘除混和运算。
运算定律及简便运算
一、加法运算定律:
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+b+c
加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-b+c
二、乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×b×c
乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。
(a+b)×c=a×c+b×c a-b×c=a×c-b×c
鸡兔问题公式
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的'脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(个)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
鸡兔同笼
1、鸡兔同笼属于假设问题,假设的和最后结果相反。
2、“鸡兔同笼”问题的解题方法
假设法:
①假如都是兔
②假如都是鸡
③古人“抬脚法”:
解答思路:
假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。
3、公式:
鸡兔总脚数÷2-鸡兔总数=兔的只数;
鸡兔总数-兔的只数=鸡的只数。
四则运算
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、先乘除,后加减,有括号,提前算
关于“0”的运算
1、“0”不能做除数; 字母表示:a÷0错误
2、一个数加上0还得原数; 字母表示:a+0=a
3、一个数减去0还得原数; 字母表示:a-0=a
4、被减数等于减数,差是0; 字母表示:a-a=0
5、一个数和0相乘,仍得0; 字母表示:a×0=0
6、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商; 5÷0得不到商.(无意义)
1.由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2.三角形有3个角、3条边、3个顶点。
3.从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。
4.为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
5.三角形具有稳定性。
6.三角形的任意两边的和大于第三边。
7.三角形按角分成:
(1)锐角三角形(三个内角都是锐角的三角形)
(2)直角三角形(有一个角是直角的三角形)
(3)钝角三角形(有一个角是钝角的三角形)
8.三角形按边分成:
(1)等腰三角形(有两条边相等,相等的两条边叫做三角形的腰;有两个角相等,相等的两个角叫做底角。)
(2)等边三角形(三边相等,三个内角相等都是60°)
(3)一般三角形
9.三角形中只能有一个直角;三角形中只能有一个钝角;
三角形中至少有两个锐角,最多有三个锐角。
10.三角形的内角和是180°。
11.最少用2个相同直角三角形可以拼一个平行四边形。最少用3个相同等边三角形可以拼一个梯形。最少用2个相同等边三角形可以拼一个平行四边形。最少用2个相同等腰直角三角形可以拼一个正方形。最少用2个相同直角三角形可以拼一个长方形。
12.无论是什么形状的图形,没有重叠,没有空隙地铺在平面上,就是密铺。
数学万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
小学数学必背公式
关系表达式
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
单位间进率
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
1吨=1000千克1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米1亩=666.666平方米
1升=1立方分米=1000毫升1毫升=1立方厘米
⑷ 四年级数学下册第三单元《运算定律和简便计算》知识点总结
数学作为人类对事物的抽象结构与模式进行严格描述、推导的一种通用方式,可以应用于现实世界的任何问题。下面为大家带来四年级数学下册第三单元《运算定律和简便计算》知识点总结,快来看看吧。
1、加法交换律:两个加数交换位置,和不变。字母公式:a+b+c=(b+a)+c
加法结合律:先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a+b+c=a+(b+c)
2、乘法交换律:两个因数交换位置,积不变。 字母公式:a×b=b×a
乘法结合律:先乘前两个数,或者先乘后两个数,旦谨积不变。
字母公式:a×b×c=a×(b×c)
乘法分配律:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。字母公式:(a+b)×c=a×c+b×c
拓展:(a-b)×c=a×c-b×c 或 a×(b-c) =a×b-a×c
3、 连减:a―b―c=a―(b+c)
4、 连除: a÷b÷c=a÷(b×c)
5、常见乘法计算(敏感数字) :25×4=100 125×8=1000
加法交换律简算例子 加法结合律简算例子
75+98+25 488+40+60
=75+25+98 =488+(40+60)
=100+98 =488+100
=198 =588
乘法交换律简算例子 乘法结合律简算例模清基子
25×56×4 99×125×8
=25×4×56 =99×(125×8)
=100×56 =99×1000
=5600 =99000
含有加法交换律与结合律的简便计算 含有乘法交换律与结合律的简便计算
65+28+35+72 25×125×4×8
=(65+35)+(28+72) =(25×4)×(125×8)
=100+100 =100×1000
=200 =100000
乘法分配律简算例子
分解式 合并式 特殊1 (添项) 特殊2
25×(40+4) 135×12―135×2 99×256+256 45×102
=25×40+25×4 =135×(12―2) =99×256+256×1 =45×(100+2)
=1000+100 =135×10 =256×(99+1) =45×100+45×2
=1100 =1350 =256×100 =4500+90
=25600 =4590
特殊3 特殊4
99×26 35×8+35×6-4×35
=(100-1)×26 =35×(8+6-4)
=100×26-1×26 =35×10
=2600-26 =350
=2574
连续减法简便运算例子
528-65-35 528-89-128 528-(150+128)
=528-(65+35) =528-128-89 =528-128-150
=528-100 =400-89 =400-150
=428 =311 = 250
连续除法简便运算例子;其它简便运算例子:(带着符号搬家)
3200÷25÷4 256―58+44 250÷8×4
=3200÷(25×4) =256+44―58 =250×4÷8
=3200÷100 =300―58 =1000÷8
=32 =242 =125
配套练习:
355+260+140+245 102×99 645-180-245 382×101-382
4×60×50×8 35×8+35×6-4×35 125×32 101×56
1022-478-422 987-(287+135) 672-36-64 36+64-36+64
487-287-139-61 2000-368-132 1814-378-422
89×99+89 155+264+36+44 25×(20+4) 88×225+225×12
568-(68+178) 561-正告19+58 382+165+35-82 155+256+45-98
236+189+64 759-126-259 25×79×4 569-256-44
216+89+11 57×125×8 1050÷15÷7 129×101―129
149×69―149+149×32 56×51+56×48+56 125×25×32 24×25
125×48 514+189―214 369―256+156 56×25×4×125
24×73+26×24 16×98+32 512+(373―212) 228+(72+189)
《运算定律和简便计算》课堂教学总结
昨天,我们听了x老师的一堂数学课,他执教的内容是“运算定律和简便计算”的复习课。这节课给我留下了很深的印象,他对教材的把握、处理以及他的教学风格和学生课堂反馈出来的信息,都给所有的听课老师留下了好的印记,现对他的课堂教学进行评析。
一、何老师的课体现了复习课的特点
复习课的特点主要是知识的再现、知识的整理、知识的联系、知识的`应用。何老师在新课开始,就直奔主题“今天我们要复习运算定律和简便计算的有关知识。”紧接着问:“运算法则有哪些?”教师根据学生的回答进行板书。当然,学生的回答是没有秩序的,它只是知识的再现。这时,何老师根据学生的回答在板书的过程中很自然的将各种相关的知识点进行整理,形成知识网络,知识的网络是在教师的引导下,学生自主建构的,体现了学生的主体地位,而这样获取的知识印记是牢固的、稳定的。
二、整堂课处处有特色
经常听到一些老师说复习课不好上,只不过是查漏补缺,系统整理及巩固发展而已,比较枯燥乏味。但是,何老师的这堂课复习课,却上得有声有色,特别是在练习设计中很有特色。整堂课教师关注学生对运算定律的理解和选择,而且使学生在轻松快乐的气氛中学习数学。
总之,整节课的教学,学生学得很扎实,教师教得轻松,真正体现了“学生是学习的主体,教师是数学学习的组织者与引导者”的新课程理念,学生是快乐的,学习是有价值的。
不过,我在此提一些自己不成熟的建议:
1、教师应该多多熟悉“班班通”的运用;
2、教师在教学过程中,应该适当的运用激励性的语言,鼓励学生;
3、对于计算题教学课而言,计算量不宜过大。