㈠ 数学的简洁美主要体现在什么地方
19世纪大数学家高斯就说过“数学是科学中的皇后”),它具有简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异美(有限美、神秘美等)。美在一个困难问题的简单解答,一个复杂问题的简单答案;美在种种图案、建筑物、衣服式样、家具及装饰等事物的对称性上;美在人们对和谐、有规律的事物的喜爱以及从事物中发现普遍性与统一性的秩序和规律中。 1、美观:数学对象以形式上的对称、和谐、简洁,总给人的观感带来美丽、漂亮的感受。 比如:几何学常常给人们直观的美学形象,美观、匀称、无可非议; 在算术、代数科目中也很多: 如(a+b)·c=a·c+b·c; a+b=b+a 这些公式和法则非常对称与和谐,同样给人以美观感受。 但是外形上的的美观,并不一定是真实和正确的。 比如:sin(A+B)=sinA+sinB是何等的“对称”、“和谐”、“美观”啊!但是它是错误的,就象“”虽然美丽但是有“毒”。 2、美好:数学上的许多东西,只有认识到它的正确性,才能感觉到它的“美好”。 不美丽的例子很多,比如二次方程的求根公式,无论从哪方面看都不对称、不和谐、不美观。但是,当我们真正了解它、运用它,就会感到它的价值,它的美好。这一公式告诉我们许多信息:±表示它有两个根,a≠0、△会显示根的数目和方程的性质…… 3、美妙:美妙的感觉需要培养,美妙的感觉往往来自“意料之外”但在“情理之中”的事物。三角形的高交于一点就是这样;2个圆柱体垂直相截后将截面展开,其截线所对应的曲线竟然是一条正弦曲线,与原来猜想的是一断圆弧大出“意料之外”,经过分析证明的确是正弦曲线,又在“情理之中”,美妙的感觉就油然而生了。 4、完美:数学总是尽量做到完美无缺。这就是数学的最高“品质”和最高的精神“境界”。欧氏几何公理化体系的建立,“1+1”的证明都是追求数学完美的典型例子。
㈡ 数学的美体现在生活的哪些方面
数学的美体现在哪些方面
(1)完备之美
没有那一门学科能像数学这样,利用如此多的符号,展现一系列完备且完美的世界。就说数吧,实数集是完备的,任意多的实数随便做加减乘除乘方开方,其结果依然是实数(注意:数学上完备是根据序列的收敛性严格定义的,我这里不是完备的严格说法,但可认为是广义的说法)。引入虚数单位,实数集扩展到复数集,还是任意多的复数,还做那些运算,结果还是复数。
把具体的数抽象成空间中的点,在一定的假设和约定之下,可以得到完备的空间,这些空间可以是一维的,也可以是二维三维甚至多维的。三维之外,你就难以想象,但不能否认其存在。某空间的点、序列依一定的法则进行运算,依然不能离开那个空间,这就是完备性。这种完备性是很奇妙的。你可以把它想象成在一个球体中,不管你如何运动,总是不能钻出球面。
具有完备性的空间,可以带来许多好处。工程中用得最多的空间是Hilbert空间。顺便提一句,Hilbert是个二十世纪最伟大的数学家之一。
另外,数学中的诸多体系,其本身也都是完备的,如欧式几何,这是大家所熟知的,在几个公理的基础上,推演出一系列漂亮的结论,生命力经久不衰,尤其在工程运用中。
(2)对称之美
提到对称的美,大家首先想到的是几何,其实几何只是一方面,是“看得见”的那一方面。实际上,对称性在数学中处处存在。如微积分的基本定理,展现了微分与积分之间的紧密联系,本身具有很强的对称性。如泛函中的对偶算子,不但在运算上具有显着的对称性,在性质上也处处显示出一致性。
(3)简洁之美
数学中有个非常漂亮的公式,那就是欧拉公式。这个式子把数学中几个“伟大的”数给联系到了一块,它们分别是自然对数、圆周率、虚数单位以及1,其中前两个是超越数,是无数个超越数中人类目前仅仅找到的两个,而且这两个对数学影响巨大。我大胆猜想,当下一个超越数被找到的时候,数学将会经历另一场巨大的革命。虚数单位今天看起来没什么特别,但它刚被引进的时候曾受到众多(大)数学家的置疑和反对,最后它终于还是进来了,而数学也开辟了一条康庄大道,那就是复变函数。
勿庸置疑,欧拉公式是简洁而完美的,另一个可以跟它抗衡的式子出现在物理学中,那就是爱因斯坦的质能变换公式。我这种说法可能有点武断,不过我目前只能想到这一点,呵呵。
(4)抽象之美
这一点可能会引起许多人的异议,因为在许多人看来,抽象是不好的,因为离现实太远。可是我不这么认为,数学如果不抽象,便难以发展,虽然很多问题都是从现实引出的。数学建立在符号逻辑的基础之上,即使是解决实际问题,也要把问题抽象出来,用数学符号表示,才可以很好的解决。另一方面,抽象的数学,能带动你在无限的思维空间中遨游,抛开一切杂念,成为一种美好的享受。当然,这有点理想化,但不可否认,这确实是一种美的体验。
㈢ 数学的美在哪
尽管植物姿态万千,但无论是花,叶和枝的分布都是十分对称,均衡和协调的.碧桃,腊梅,它们的花都以五瓣数组成对称的辐射图案;向日葵花盘上果实的排列,菠萝果实的分块以及冬小麦不断长出的分蘖,则是以对称螺旋的形式在空间展开.许许多多的花几乎也是完美无缺地表现出对称的形式.还有树木,有的呈塔状,有的为优美的圆锥形……植物形态的空间结构,既包含着生物美,也包含着数学美.
着名的数学家笛卡尔曾研究过花瓣和叶形的曲线,发现了现代数学中有名的"笛卡尔曲线".辐射对称的花及螺旋排列的果,它们在数学上则符合黄金分割的规律.小麦的分蘖,是围绕着圆柱形的茎按黄金分割进行排列和展开的.常见的三叶草和常春藤的叶片形状,也可以用三角函数方程来表示.
以叶子为例,叶子的排列是建立在能充分获得光合作用面积和采集更多阳光这一基础上的.如车前草,有着轮生排列的叶片,叶片与叶片之间的夹角为137°30′,这是圆的黄金分割的比例.梨树也是如此,它的叶片排列是沿对数螺旋上升,这也保证了叶与叶之间不会重合,下面的叶片正好在从上面叶片间漏下阳光的空隙地方,这是采光面积最大的排列方式.可见,沿对数螺旋按圆的黄金分割盘旋而生,是叶片排列的最优良选择.
高等植物的茎也有最佳的形态.许多草本植物的茎,它们的机械组织的厚度接近于茎直径的七分之一,这种圆柱形结构很符合工程上以耗费最少的材料而获得最大坚固性的一种形式.一些四棱形的茎,机械组织多分布于四角,这样也提高了茎的支撑能力,支持了较大的叶面积.
当然,整株植物的空间配备也必须符合数学,力学原则,才适合在自然界中的生存和发展.像一些大树,都有倾斜而近似垂直的分枝,圆柱形的茎和多分枝的根,这样有利于生长更多的叶片,占据更大的空间和更好地进行光合作用.
透过繁茂的枝叶,我们看到了绿色世界里的数学奇观.若进一步了解这其中的奥秘,进行仿生,则会给人类带来无穷的益处.
1.用原文中的语句概括本文说明的中心
答:尽管植物姿态万千,但无论是花 叶和枝的分布都是十分对称 均衡和协调的。
(如果答植物形态的空间结构,既包含着生物美,也包含数学美也算对)
2.①划线句子?
②第三段文字的结构特点是 (总分总)
3.“许许多多的花几乎也是完美无缺的表现出对称的形式。”句子中“几乎”一词能否删去?请说明理由。
答:不能删去。因为“几乎”一词说明并不是所有的花都是完美无缺地表现出对称的形式。
“几乎”一词体现了说明文的准确性与可靠性。
㈣ 数学美在哪里举个例子
1,几何图形的对称美是明显的美。
2,有些美不但是形式,还是内在:
1*1=1
11*11=121
111*111=12321
1111*1111=1234321
。。。。
142857*1=142857
142857*2=285714
142857*3=428571
142857*4=571428
142857*5=714285
142857*6=857142
。。。。。。
3,有些美是用心去体会的,
再看看别人怎么说的。
㈤ 我想问一下数学的美到底在哪里
数学之美在于它的环环相扣,逻辑性强,少了一步都得不出下一步的结果,这可能就是那种美吧,个人愚见
㈥ "哪里有数学,哪里就有美,哪里就有发现
古希腊数学家普洛克拉斯有一句名言:“哪里有数学,哪里就有美。”
亚里士多德则说:“虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离。因为美的主要形式是‘秩序、匀称和确定性’,这些正是数学研究的原则。”
我国数学家华罗庚也说过:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美。”
㈦ 数学美在哪里
帮助发现真理
数学是物理学的依托,没有数学公式的检验就没有自然真理的发现和探索
使人的思维更加严密有条理