导航:首页 > 数字科学 > 数学建模如何提出假设

数学建模如何提出假设

发布时间:2023-05-27 16:46:52

① 数学建模中如何对问题进行假设,假设时应该注意哪些问题

1.假设尽量要丛粗少,要不然就太过理想化了,失去了其实际意义
2.假设必须启郑逗要基础,切实可行,容易达到悄卖
3.假设要合情合理
4.假设最好不要重复,同一类的要最简洁的就好

② 什么是数学建模如何建模

数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。

对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

③ 数学建模中 模型假设怎么写

数学建模中模型假设怎么写这个问题我不是很清楚。

数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
全网招募小白免费学习,测试一下你是否有资格。
想要了解关于数学建模方面的更多内容,可以了解一下广州中教在线教育科技有限公司。(以下简称:中教在线)。中教在线联合工控信息安全技术国家工程实验室推出工控信息安全培训项目,旨在提升我国工业控制系统安全保障水平,强化行业工控安全系统性认识,提高工业企业抵御信息安全事件的能力,降低信息泄露风险,加强工控安全技术人员专业能力和专业知识。

④ 全国大学生数学建模竞赛论文的模型假设怎么写

数学建模文章格式模版

题目:明确题目意思

一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果

二、关键字:3-5个

三、问题重述。

四、模型假设

根据全国组委会确定的评阅原则,基本假设的合理性很重要。

(1)根据题目中条件作出假设。

(2)根据题目中要求作出假设。

建模过程

了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

以上内容参考:网络-数学建模

⑤ 数学建模的七个步骤

数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法。数学建模没有固定的格式和标准,也没有明确的方法,通常有6个步骤:

明确问题
合理假设
搭建模型
求解模型
分析检验
模型解释
1、明确问题

数学建模所处理的问题通常是各领域的实际问题,这些问题本身往往含糊不清,难以直接找到关键所在,不能明确提出该用什么方法。因此建立模型的首要任务是辨明问题,分析相关条件和问题,一开始尽可能使问题简单,然后再根据目的和要求逐步完善。

2、合理假设

作出合理假设,是建模的一个关键步骤。一个实际问题不经简化、假设,很难直接翻译成数学问题,即使可能也会因其过于复杂而难以求解。因此,根据对象的特征和建模的目的,需要对问题进行必要合理地简化。

合理假设的作用除了简化问题,还对模型的使用范围加以限定。

作假设的依据通常是出于对问题内在规律的认识,或来自对数据或现象的分析,也可以是两者的综合。作假设时,既要运用与问题相关的物理、化学、生物、经济、机械等专业方面的知识,也要充分发挥想象力、洞察力和判断力,辨别问题的主次,尽量使问题简化。

为保证所作假设的合理性,在有数据的情况下应对所作的假设及假设的推论进行检验,同时注意存在的隐含假设。

3、搭建模型

搭建模型就是根据实际问题的基本原理或规律,建立变量之间的关系。

要描述一个变量随另一个变量的变化而变化,最简单的方法是作图,或者画表格,还可以用数学表达式。在建模中,通常要把一种形式转换成另一种形式。将数学表达式转换成图形和表格较容易,反过来则比较困难。

用一些简单典型函数的组合可以组成各种函数形式。使用函数解决具体的实际问题,还比须给出各参数的值,寻求这些参数的现实解释,往往可以抓住问题的一些本质特征。

4、求解模型

对模型的求解往往涉及不同学科的专业知识。现代计算机科学的发展提供了强有力的辅助工具,出现了很多可进行工程数值计算和数学推导的软件包和仿真工具,熟练掌握数学建模的仿真工具可大大增强建模能力。

不同数学模型的求解难易不同,一般情况下很多实际问题不能求出解析解,因此需要借助计算机用数值的方法来求解,在编写代码之前要明确算法和计算步骤,弄清初始值、步长等因素对结果的影响。

5、分析检验

在求出模型的解后,必须对模型和“解”进行分析,模型和解的适用范围如何,模型的稳定性和可靠性如何,是否到达建模目的,是否解决了问题?

数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。

一般误差有以下几个来源,需要小心分析检验:

模型假设的误差:一般来说模型难以完全反映客观实际,因此需要做不同的假设,在对模型进行分析时,需要对这些假设小心检验,分析比较不同假设对结果的影响。
求近似解方法的误差:一般来说很难得到模型的解析解,在采用数值方法求解时,数值计算方法本身也会有误差。这类误差许多是可以控制的。
计算工具的舍入误差:在用计算器或计算机进行数值计算时,都不可避免由于机器字长有限而产生舍入误差,如果进行了大量运算,这些误差的积累是不可忽视的。
数据的测量误差:在用传感器、调查问卷等方法获得数据时,应注意数据本身的误差。
6、模型解释

数学建模的最后阶段是用现实世界的语言对模型进行翻译,这对使用模型的人深入了解模型的结果是十分重要的。模型和解是否有实际意义,是否与实际证据相符合。这一步是使数学模型有实际价值的关键一步。

相关阅读

数学模型和数学建模介绍

数学建模常用的

⑥ 数学建模模型假设

数学建模文章格式模版
题目:明确题目意思
一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果
二、关键字:3-5个
三.问题重述。略
四.
模型假设

根据全国组委会确定的评阅原则,基本假设的合理性很重要。

(1)根据题目中条件作出假设

(2)根据题目中要求作出假设

关键性假设不能缺;假设要切合题意
五.
模型的建立

(1)
基本模型:

1)
首先要有数学模型:数学公式、方案等

2)
基本模型,要求
完整,正确,简明

(2)
简化模型

1)
要明确说明:简化思想,依据

2)
简化后模型,尽可能完整给出

(3)
模型要实用,有效,以解决问题有效为原则。

数学建模面临的、要解决的是实际问题,

不追求数学上:高(级)、深(刻)、难(度大)。

u
能用初等方法解决的、就不用高级方法,

u
能用简单方法解决的,就不用复杂方法,

u
能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。

(4)鼓励创新,但要切实,不要离题搞标新立异
数模创新可出现在

▲建模中,模型本身,简化的好方法、好策略等,

▲模型求解中

▲结果表示、分析、检验,模型检验

▲推广部分

(5)在问题分析推导过程中,需要注意的问题:

u
分析:中肯、确切

u
术语:专业、内行;;

u
原理、依据:正确、明确,

u
表述:简明,关键步骤要列出

u
忌:外行话,专业术语不明确,表述混乱,冗长。
六.
模型求解

(1)
需要建立数学命题时:
命题叙述要符合数学命题的表述规范派宽,
尽可能论证严密。

(2)
需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称

(3)
计算过程,中间结果可要可不要的搜羡高,不要列出。

(4)
设法算出合理的数值结果。
七、
结果分析、检验;模型检验及模型修正;结果表示

(1)
最终数值结果的正确性或合理性是第一位的


(2)
对数值结果或模拟结果进行必要的检验。
结果不正确、不合理、或误差大时,分析原因,
对算法、计算方法、或模型进行修正、改进;

(3)
题目中要求回答的问题,数值结果,结论,须一一列出;

(4)
列数据问题:考虑是否需要列出多组数据,或额外数据
对数据进行比较、分析,为各种方案的提出提供依据;

(5)
结果表示:要集中,一目了然,直观,便于比较分析

▲数值结果表示:精心设计表格;可能的话,用图形图表形式

▲求解方案,用图示更好

(6)
必要时对问题解答,作定性或规律性的讨论。
最后结论要明确。
八.模型评价

优点突出,缺点不回避。

改变原题要求,重新建模可在此做。

推广或改进方向时,不要玩弄新数学术语。
九、参考文献.十、附录

详细的结果,详细的数据表格,可在此列出。

但不要错,错的宁可不列。

主要结果数据,应在正文中列出,不怕重复。

检查答卷的主要三点,把三关:

n
模型的正确性、合理性、创新世尺性

n
结果的正确性、合理性

n
文字表述清晰,分析精辟,摘要精彩
内容你自己写吧,我也正想要呢

⑦ 数学建模具体有些什么内容如何进行

一、定义
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
二、数学建模的几个过程
模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
模型分析:对所得的结果进行数学上的分析。
模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用:应用方式因问题的性质和建模的目的而异。

⑧ 数学建模如何做假设 我有一本数学建模的书 看过后面对一些实际问题还是不知道如何下手

一、根据网上资料加以整理,回答如下:

1、根据全国组委会确定的评阅原则,基本假设的合理性很重要。
(1)根据题目中条件作出假设
(2)根据题目中要求作出假设
关键性假设不能缺;假设要切合题意。

2、合理的假设可以简化模型,从而反映模型的本质问题,如果过多考虑次要因素会使模型的建立难度加大,理论和实际问题总是存在差距,这是不可避免的。所有理论模型都是理想的,但所有理论模型又是有用的。

3、假设就是把复杂的问题假设成简单的问题,当然这不能改变题原来的本意,尽量的把一些不确定因素,假设出来,也就是把他定加以限定或不予考虑等等。
4、数学建模大都是开放性的试题,主要就是要有合理的假设。但不是一次性就假设完的,你在做题过程中还会发现新的问题,要么改进模型,要么增加假设,具体用哪个就要看合不合理了。

【参考网址见附件】

二、根据自己多次数学建模经验,回答如下:

1、首先,多看优秀论文肯定会找到感觉的,这种感觉就是如何用建模的语言表达问题。

2、其次,每个人都有自己的专长,最合理的就是,让那个最会写作的(这里指学术论文写作)来写。

3、假设看似只是建模的第一步,实际上在整个建模过程中,都要不断的来验证、完善假设,也就是完善模型。

4、“给一个问题不知道要做什么,怎么做”,这其中涉及到选题。每个人(或者每个建模团队)都有自己擅长的题目。在看有些优秀论文时,我们只需要粗略浏览;而有些就要细细品味。

5、除了多看书和论文,参加培训以及之后的建模模拟练习都是必不可少的。

你已经对建模感兴趣了,剩下的就是努力。相信会有好的回报的!

⑨ 数学建模方法和步骤

数学建模的方法:

一、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来橡让配推导出模型。

二、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型

三、仿真和其他方法。

1、计算机仿真:实质上是统计估计方法,等效于抽样试验。包括离散系统仿真和连续系统仿真。

2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。

梁指3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。

数学建模的步骤:

一、模型准备:了解问题的实际背景滑雹,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

二、模型假设:根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设。

三、模型构成:根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

四、模型求解:可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法进行求解。

五、模型分析:对模型解答进行数学上的分析。

阅读全文

与数学建模如何提出假设相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1258
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1348
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:824
武大的分析化学怎么样 浏览:1211
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016