‘壹’ 关于数学的历史知识
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。
乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”
和其他古代国家掘森一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。
在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所着的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(判世亩11=10十1叫加一,9=10—1叫损一)。杨返州辉还用“连身加”这名词来说明201—300以内的质数。
‘贰’ 除了鳖臑,古代还有哪些奇怪的数学名词
《九章算术·商功》:斜解立方:
立升桐方体→堑堵吵纯坦[qiàndǔ]→阳马→鳖臑[biē nào] 意思是:
长方体→直三棱柱→直裤迅四棱锥→直三棱锥,关系:
阳马+鳖臑=堑堵,堑堵+堑堵=立方体,意思是:
1个长方体(包括正方体)可以分成2个同体积的堑堵(直三棱柱);
1个堑堵(直三棱柱)可以分成1个阳马(直四棱锥)和1个鳖臑(直三棱锥)。
‘叁’ 数学的由来 数学的历史及其名称是怎么来的
数学的由来: 数学,我国古代叫算术,后来叫算学,又叫数学。近几十年来才确定统一叫做数学。古代“算”字有三种写法:筹、笄、算。从字形的结构,可以看到事物演变的一些痕迹。
许慎《说文解字》对这几个字作如下解释:“笄”,“长六寸,计历数者,从竹从弄言常弄乃不误也”。“算,数也,从竹上具,读若”。“示示”,或“算”原来都一种竹制的工具,是几寸长的竹签,也叫筹码。用来记数、计算或卜卦。摆弄这些“算”,有一套技术基学问,自然就叫做“算术”或“算学”。
我国缺洞盛产竹子,是世界上最善于利用竹子的国家。用竹子做计算工具,使我国古代数学带有许多和西方不同的特色。“示示”由两个“示”字合成。《说文》解释“示”字说:“示,神事也。”“二”是古文的上字,三竖(后来写成一竖两点)是日、月、星。古人以为天上有神灵,神的表示是从上面下来的。矫同时也用来占筮,因此“示示”字带有迷信色彩,是不奇怪的。
“算”字是什么时候开始使用的?李约瑟认为在甲骨文或金文中从未发现过这个算字,因此它出现的年代不可能早于公元前3世纪。无论如何,“算术”这个名称在汉代已经通行。正式使用,纯扮没是在《九章算术》一书中。它的涵义是指当时的数学,和现代算术的意义不同。宋、元两代,我做纳国数学发展居世界前列。那时“算学”和“数学”这两个词是并用的。
算学、数学并用的情况,一直延续了几百年,1935年“中国数学会名词审查委员会”仍主张两词并用。直到1939年6月,为了划一起见,才确定用“数学”,而不用“算学”。
‘肆’ 中国古代数学
国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少着名的数学着作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名着是了解古代数学成就的丰富宝库。
例如现在所知道的最早的数学着作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。
开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学着作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。
从汉唐时期到宋元时期,历代都有着名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。
《算经十书》
《算经十书》是指汉、唐一千多年间的十部着名数学着作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。
这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学着作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文着作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。
对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。
《九章算术》,也不知道确实的作者是谁,只知道西汉早期的着名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是渗梁有许商、杜忠二人所着的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。
从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法。还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的。这要比欧洲同类算法早出一千五百多年。在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则。
《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内历宴插法),在阿拉伯和欧洲早期的数学着作中,就被称作“丛烂运中国算法”。现在,作为一部世界科学名着,《九章算术》已经被译成许多种文字出版。
《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作。这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题。
《算经十书》的其余几部书也记载有一些具有世界意义的成就。例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较着名。而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的。
《缀术》是南北朝时期着名数学家祖冲之的着作。很可惜,这部书在唐宋之际公元十世纪前后失传了。宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数。祖冲之的着名工作——关于圆周率的计算(精确到第六位小数),记载在《隋书?律历志》中(参见本书第101页)。
《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了。
宋元算书
中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学着作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。
特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位着名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学着作,包括:
秦九韶着的《数书九章》(公元1247年);
李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年);
杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年);
朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。
《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页)。书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多。《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学。杨辉的着作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页)。
宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年。
宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的。
宋元以后,明清时期也有很多算书。例如明代就有着名的算书《算法统宗》。这是一部风行一时的讲珠算盘的书。入清之后,虽然也有不少算书
‘伍’ 古代人把数学称为什么
小代的数学课古时没有开!古时学堂基本以文科为主,理科就算术:现在的典型应用题,什么鸡兔同笼等都是,代数近代有开,只是一部分大些规模的学堂几何开得也较晚近代才开设几何课!科举制度其实大部分就是八股文功夫,什么起承转合啦都说受尽十年寒窗苦,怀抱文章跳龙门!一篇八股文写好了就中状元举人了!古时的《九章算术》等可以看出,数学还不落后……
‘陆’ 除了鳖臑,古代还有哪些奇怪的数学名词
曲返灶池,刍童,渗世数冥丛首谷……
‘柒’ 古代人把数学称为什么东西
古代人把数学称为算术。
算术是数学中最古老、最基础和最初等的部分,它研究数的性质及其运算。把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。在古代全部数学就叫做算术,现代的代数学、数论等最初就是由算术发展起来的。后来,算学、数学的概念出现了,它代替了算术的含义,包括了全部数学,算术就变成了其中的一个分支。
‘捌’ 中国古代的数学用语是怎样的
以《九章算经》为例,节选其两条题目:
-----又有田广十二步,从十四步。问为田几何?答曰:一百六十八步。
方田指的是面积 ---- 你可以理解成计算田地的面积。
田,广12步,从14步 ---- 矩形,长12,宽14。
问田几何? ---- 几何在这里就是求面积的意思。
答:168步。 ---- 面积就是168,面积单位没有平方的概念,步乘以步,还是步。
下一题~
----- 今有共买犬,人出五,不足九十;人出五十,适足。问人数,犬价几何。
----- 答曰:二人,犬价一百。
----- 盈、适足,不足,适足术曰:以盈及不足之数为实。置所出率,以少减多,余为法。实如法得一人。其求物价者,以适足乘人数得物价。
第二题不一字一句了,我给你直接翻译成现代语:
问题是:买狗,每人出5元,差90元;每人出50元,刚刚好。问有多少人,买狗要?
(这里注意,问题没有问有多少只狗,也没有问狗单价,狗在这里就是一个整体,问的是买狗总共要多少钱)
答案是:有2人,狗总价100元。
答案解析,这里最麻烦:
盈指的是每人出多少钱,盈够了,刚刚好。
不足怎么办?按适足术算,适足术是《九章算经》前几章讲过的盈不足术。
盈及不足之数为实。置所出率,以少减多,余为法。
盈的差值为实,算所处率:用多减去少的,多余的为法。
盈(每人出多少钱)的差值是 50-5=45 这个45就是实。
所处率是 90-0=90 (多的是90,少的是那个刚刚足够,即为0) 这个90就是法
实如法得一人。
每有一份实,与法相等,就有1人。其实就是用法除以实的意思。
90/45=2人。(2份实=1份法,所以是2人)
其求物价者,以适足乘人数得物价。
题目说每人给50元就刚刚好,我们算出共有2人。
50*2=100元。
得答案是2人买狗,买狗共需要100元。
这里可以看出,《九章算经》是1800年前的书,当时还没有假设代数方程的概念。
但是可以解出这种二元一次方程组的问题。
这种问题放到现在,设x,y就可以很快的解决。
1800年前的人不会方程,用“盈不足”的概念,以差值算出人数。
这在当时世界是很领先的,欧洲还停留在算乘除的阶段,中国已经开始有代数萌芽了。
‘玖’ 数学又叫什么
数学叫作算术,又称算学,最后才改为数学。
中国古代的算术是六艺之一(六艺中称为“数”)。数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。
从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
中国数学简史:
数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
符号:
我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序。
现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含着大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
以上内容参考网络—数学